Slewing rings

General catalogue

Index

Introduction

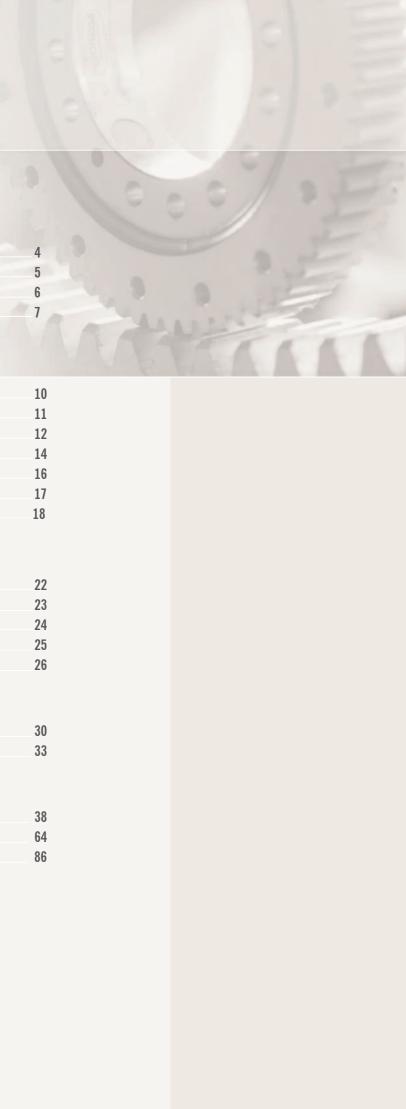
Company profile Quality Main applications Range of products

General concepts

Load trasmission Connection structure Load factors choice Bolts Calculation example Dynamic loads Data request form

Slewing ring features

Gears Heat treatments Materials Dimensional tolerances Rotation torques


Assembly and maintenance

Assembly Maintenance

Product range

Slewing ring - 1 row of balls Slewing ring - 2 rows of balls Slewing ring - 1 row of rollers

Leonessa Brevini

As worldwide leading manufacturer, Leonessa Brevini offers its experience in the design and manufacture of slewing rings.

Company profile

Leonessa Brevini general slewing rings catalogue shows the entire production range and aims to be a valuable aid in choosing the most suitable slewing ring.

The range includes rings with diameters up to 2500 mm with the following features: one row of balls or rollers, two rows of balls. All products are available with internal or external gear, or without gear.

The slewing rings are manufactured exclusively through numerical control machinery. Induction hardening of the bearing raceways and gear is carried out by means of equipments which have the most sophisticated control systems. Grinding of the bearing raceways guarantees high precision and uniformity of rotation.

Technical skills of its engineers and high quality manufacturing processes allow Leonessa Brevini to be a supplier of solutions, rather than just products according to the demands of the most challenging applications and demanding customers.

Advanced technology and continuous improvement are the keys of the Company's constant evolution.

The main target of Leonessa Brevini is the improvement of quality in all its aspects. Attention to the specific demands of its clients and to the market, optimization of all production processes and appliance of strict control procedures are just some of the guidelines of the company organization.

Main applications

Leonessa Brevini slewing rings are used in several fields of application, amongst which:

- Lifting equipment: Mobile cranes, Gantry cranes, truck cranes, Aerial platforms, Stackers.
- Building equipment: Concrete pumps, Demolition equipments, Dumpers, Multi purpose lifting machines, Construction cranes, Concrete mixers.
- Automation: Robots, Transportation lines, Automation systems.
- Ecology: Water treatment plants.
- Forestry machinery: Boogie axles, Forestry cranes, Forest havesters.
- **Rotative machinery:** Bottling, Packaging equipments, Palletizers.
- **Earth moving equipments and foundation machines:** Excavators, Soil drilling machines and tools, Graders.
- Rotating tables:

Marble cutting machinery, Machine tools/welding machines.

LEONESS Abrevini (YANCHENG) SLEWING TENTING COLIN

后(盘城)回转支革前限全国

Types

Leonessa Brevini manufacturers Slewing Rings according to the following features:

1 Row of balls

Internal

External


Without

Range of products

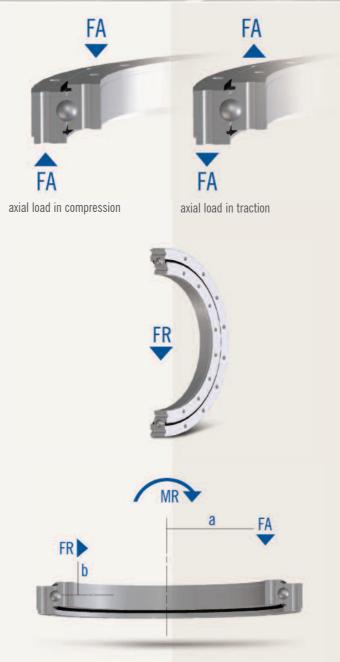
1 row of rollers 2 Rows of balls

General concepts

The following information helps in choosing the best slewing ring. General indications and formulas, combined with drawings and load charts, offer the best working tool. Leonessa Brevini Technical Department is available to verify the suitability.

Load transmission

Slewing rings are designed and produced to connect two parts of a machine, enable a reciprocal rotation and the transmission of axial loads, radial loads and tilting moment in various combinations. For this purpose, it is defined:


Axial load FA: sum of all forces acting parallel to the rotation axis of the slewing ring.

The slewing rings are normally mounted against the connecting structure, with forces acting in compression; in the case of axial load in traction it is necessary to contact the Technical Department of Leonessa Brevini for further examination.

Radial load FR: sum of all forces acting in perpendicular to the rotation axis of the slewing ring. In case the slewing ring is mounted vertically (with horizon-

tal rotation axis), it is necessary to contact the Technical Department of Leonessa Brevini for further examination.

Tilting Moment MR: sum of the product of each axial multiplied by its distance from the rotation axis (FA.a) and of each radial force multiplied by its distance from the plane perpendicular to the rotation axis passing through the centre of the rolling elements (FR.b).

-

Com.

-

Leonessa Brevini slewing rings transmit high loads even with their limited stiffness because the sections of the rings they are made of are small in relation to their diameters.

For this reason it is very important for the connecting structure to be sufficiently rigid, for the supporting surfaces to be sufficiently flat and for the bolted connection to be able to avoid any deformations due to high stress.

If this is not the case, after fitting the slewing ring to the connecting structure, an irregular rotation torque may occur and this may cause the lockout of the slewing ring and a premature wear of the bearing raceways.

Stiffness and flatness properties of the connecting structure and surfaces are to be as even as possible in order to guarantee a homogeneous load transmission and to avoid stress concentration.

For this reason, fitting a circular reinforcing ribs in proximity of the bearing raceway is recommended in place of radial ribs. A final mechanical machining of the supporting surfaces is also recommended in order to eliminate any irregularities from previous machining.

Connecting structure

The maximum admissible out-of-flatness errors [mm] are listed below according to the slewing ring constructive shape and to the bearing raceway diameter.

For the upper and lower supporting surfaces, the sum of circumference error and radial direction error, due to conicity, is to be less than the value listed in the chart.

Rolling diameter [mm]	Slewing rings with one ball row	Slewing rings with two ball rows	Slewing rings with crossed rollers
Up to 1000	0.15	0.20	0.10
Up to 1500	0.20	0.25	0.15
Up to 2000	0.25	0.30	0.20
Up to 2500	0.28	0.35	0.23

The maximum value is to be reached within a 180° section only once and rude variations of the surveyed measurements are to be avoided.

Load factors choice

Slewing ring choice

To choose a slewing ring the following specifications are required:

- Application's description
- Working loads on the Slewing ring
- Operating cycle
- Slewing torque
- Maximum dimensions

At first the design of a slewing ring can be made by comparing the applied loads with the load capacity of the bearing raceway.

The load capacity of a slewing ring is detailed in a load chart and is calculated by taking into consideration:

- Slewing ring geometry
- The ring's material
- The heat treatment parameters of the bearing raceways
- Dimensions, material, heat treatment and number of rolling elements
- The contact parameters

The load chart is represented in a Cartesian diagram having the compression axial force on the X-axis and the tilting moment applied to the slewing ring on the Y-axis. The point representing the maximum load, multiplied by the coefficients of application, has to be under the application limit curve.

In case of axial forces and tilting moments only, the grid references of the application/points are: $FA' = FA \cdot La$ $MR' = MR \cdot La$

Where

- FA maximum axial load
- **MR** maximum tilting moment
- La coefficient of application

If radial load FR is present, it is necessary to determine the equivalent axial load value FA'eq by using the following formulas:

 $FA'eq = (FA + 5 \cdot FR) \cdot La$ for slewing rings with one and two rows of balls

- $FA'eq = (FA + 3 \cdot FR) \cdot La$ for slewing rings with rollers where: FA maximum axial load
- FR maximum radial load
- La coefficient of application

The application point will have the coordinate (FA'eq;MR').

For radial loads larger than 10% of axial load, it is necessary to verify the calculation with the Technical Department of Leonessa Brevini.

Using the load chart it is possible to define, in the design phase, the appropriate slewing ring suitable to the working conditions with sufficient precision.

The choice must be confirmed before ordering by the Technical Department of Leonessa Brevini.

Coefficient of application

The coefficient of application is defined according to the particular performance of the slewing ring in compliance with a specific application.

These parameters have statistically been set on the basis of our long term experiences.

Application

Truck crane Mobile crane Ship crane Railroad crane Welding equipment Bottling machine Water treatment plants Lift truck Rotating table

Access platforms Construction machines Shipyard cranes Revolving winch trailer (collection service)

Steelworks cranes Earth moving machines Forestry machines Loaders Hydraulic excavator with bucket capacity up to 1.5 m3

Ladle trailer

Offshore cranes Hydraulic excavator with bucket capacity more than 1.5 m3 Crushers/shears Fair carousel

If your application is not mentioned in the chart, it is possible to refer to an application with approximate similar conditions.

Lower coefficients of application are admitted only in exceptional cases (for example: test loads) and only if authorized by the Technical Department of Leonessa Brevini.

La coefficient

1.1

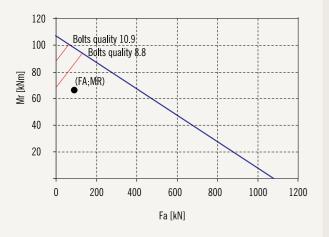
1.25

1.5

1.75

Dimensions according to specific criteria

Bolts


The correct performance of slewing rings depends on a well-designed and well-assembled bolting to the connecting structure.

The appropriate fastening method expects screws and bolts; any other fastening method (welding) is forbidden. Bolts in the quality classes 10.9 or 8.8, in compliance with regulation ISO 898-1, is recommended, while nuts have to be of an equal or greater quality class with respect to the corresponding screws.

A preliminary test of the connection can be performed using the limit curves of bolts of quality class 8.8 or 10.9 shown in the load chart of the slewing ring. (Compression axial load)

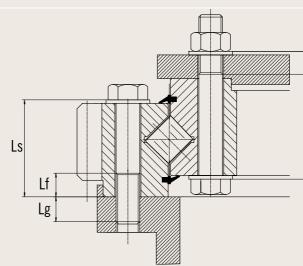
The point representing the worst load conditions (FA;MR), not multiplied by the coefficient of application, must be found under the curve of the used bolt quality.

The point representing the load condition on bolts is (FA;MR) even if there is a radial load.

The axial load applied to the slewing ring must stress the bolts by compressing them; in a contrary case, the bolt limit curves cannot be utilized and the Technical Department of Leonessa Brevini must be contacted to perform specific proofs.

The bolt limit curves are valid only if the following requirements are met:

-


1000

- "All the holes on the slewing rings must be used;
- The pre-tensioning of the bolts must be executed according to the values listed in table at page 31 utilizing a dynamometric wrench. If bolts with a treated surface (ex. zinc-plated, cadmium-plated, etc.) are used, the tightening torques must be asked to the bolt supplier;
- The bolted connection must be made with an average coefficient of friction equal to 0.14;
- The tightening torque must be checked after testing and before putting into operation, so as to eliminate any loosening due to structure settling;
- The connecting structures must be made of steel and must comply with requirements defined in their appropriate section.

When radial loads are present it is necessary to verify that the force of friction under the bolt heads does not permit any sliding of the structure, avoiding a cutting action on the bolts.

When important radial loads are present, the use of slewing rings with pilot diameters is recommended, so that these radial loads are not transferred to the bolts. To calculate the length of the bolt, the following indications must be noted:

- The Ls tightening length must be at least 5 times the diameter of the bolt: Ls/5d;
- The depth of the screw threading must be at least 1.5 times the diameter of the bolt: Lg/1.5d;
- There must be at least 6 free threads in the stressed portion of the bolt (Lf)

To avoid a loss of bolt pre-loading after tightening, it is a good idea to verify the specific pressure value exerted by the screw head or by the nut on the supporting surface, using the following formula:

$$p = \frac{\frac{F_M}{0.9}}{A_p} \le P_L$$

where

FM = pre-loading force of the bolts [N]

Ap = supporting surface of the screw head or the nut $[mm^2]$

PL = limit pressure of the material [N/mm2]

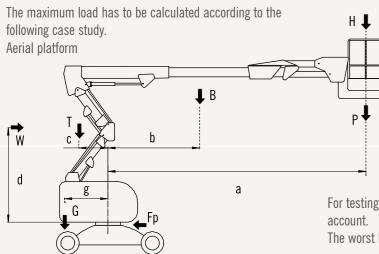
The Ap value is determined using the following formula:

$$A_{\rho} = \frac{\pi}{4} x (d_W^2 - d_r^2) \pi$$

with

 $\ensuremath{\text{dW}}\xspace = \ensuremath{\text{diameter}}\xspace$ of the contact surface under the screw or nut $\ensuremath{\text{dr}}\xspace = \ensuremath{\text{hole}}\xspace$ diameter

Whenever the limit pressure value in the following table is exceeded, quenched and tempered flat washers must be used.


The use of any type of elastic washer is forbidden.

Material	Pressure pL
Fe 37	260 Mpa
Fe 50, C45 N, 42CrMo4 N, 46Cr2 N, 46 Cr4 N	420 Mpa
C45 QT, 42CrMo4 QT, 46Cr4 QT	700 Mpa
GG25	800 Mpa

Calculation example

Choice example

Design data:

Loads		Di	stances
P 250 da H 100 da B 650 da G 1800 da T 750 da W 150 da Fp 400 da	aN aN daN aN aN	b c g	10 m 4.75 m 0.4 m 0.7 m 4 m

Load case study 1:

maximum operating load, including wind FA = P + H + B + G + T = 250 + 100 + 650+ 1800 + 750 = 3550 daN = 35.5 kNFR = Fp - W = 400 - 150 = 250 daN = 2.5 kN $MR = (P + H) \cdot a + B \cdot b + W \cdot d - T \cdot c - G \cdot g =$ (250 + 100) . 10 + 650 . 4.75 + 150 . 4 - 750 . 0.4 -1800.0.7 = 5627.5 daNm = 56.275 kNm

Load case study 2:

operating load, including 25% overload, without wind FA = 1.25 . P + H + B + G + T = 1.25 . 250 + 100+ 650 + 1800 + 750 = 3612.5 daN = 36.125 kN $\mathbf{FR} = \mathbf{Fp} = 400 \text{ daN} = 4 \text{ kN}$ MR = (1.25 . P + H) . a + B . b - T . c - G . g = (1.25). 250 + 100) . 10 + 650 . 4.75 - 750 . 0.4 - 1800 . 0.7 = 5652.5 daNm = 56.525 kNm

For testing the worst possible load condition is taken into The worst load condition is case study 2 with:

FA = 36.125 kN $\mathbf{FR} = 4 \text{ kN}$ MR = 56.525 kNm

We chose to verify a slewing ring with one row of balls. Point A of coordinate (FA;MR) has to be under the bolt limit curve of the 8.8 or 10.9 quality class, while point B of coordinate (FAeq'; MR') has to be under the working limit curve, with:

Faeq = $FA + 5 \cdot FR = 36.125 + 5 \cdot 4 = 56.125 \text{ kN}$ $FAeq' = La \cdot FAeq = 56.125 \cdot 1.25 = 70.156 \text{ kN}$ $MR' = La \cdot MR = 1.25 \cdot 56.525 = 70.656 \text{ kNm}$ A : (36.125;56.525) B : (70.156;70.656)

According to the above mentioned calculation the Slewing ring **VE059A10** is suitable to the application; here below the load chart.

Slewing ring life cycle

The concept of the life cycle of a slewing ring is based on the theory of probability, which defines the "life cycle" of a slewing ring in the number of cycles reached by 90% of a group of slewing rings from the same lot, which have identical characteristics and operate in the same working conditions, before showing signs of wear.

The life cycle value is expressed by the formula

$L_{10} = \left(\frac{Ca}{D}\right)^n$

Where:

- is the duration expressed in millions of revs
- L₁₀ Ca is the basic dynamic load

Ρ is the dynamic load applied to the slewing ring is an exponent depending on the rolling element n (ball or roller).

Slewing rings working mainly at low rotation speed, or with swinging movements, are not usually got into proportion on the basis of their theoretical life cycle, but of static loads. Nevertheless it is possible to apply theoretical life cycle calculation methods, according to the dynamic stress, adjusting the duration L10 with appropriate factors that consider:

- Very low (less than 1 m/s) or very high tangential speeds
- Swinging movements
- High precisions
- High radial loads, or not
- Quality of the connecting structures
- Maintenance requirements of slewing rings

Please contact Leonessa Brevini Technical department for the Slewing ring dynamic load calculations and the Slewing ring theorical life cycle according to loads and factors that may effect the life cycle.

Data request form

LEONESSA brevini VANCHENG BLEWING BEARING OD LTD	DATA REQUEST FORM					
Date Sales	Mr./M	S .			Ті	tle
COMPANY						
address						
phone	email				fa	X
GEM GEM Dea	ler			pare-parts deal	er	Gamma Other
APPLICATION						
Describe						Machine Model
Rotation axis position	Type of ro					Rotation speed
Vertical Horizontal	Positioni		C	Continuous 🗌		Freinament
Loads reacting by means of: Compression Traction	working i	emperature				Environment
LOADS ON SLEWING BEARING						
Axial load						
Radial load						
Tilting moment Required life						
Torque on slewing rings gear						Nr Pinions
DIMENSIONS	Racewa	y 1 Bal		2 Balls	1	Roller Other
Competitor Code		nternal		Exterr		Without
External Ø	module		Nr te		ά	xm Km
	Pitch Ø		Tool	th width	Harde	ened Teeth no 🔽 yes 🗖
Internal Ø			1.00		Tharac	
Total width	External w	vidth			Intern	al width
External Ring Distance Holes		Nr		Туре		Equally spaced Yes 🗌 No 🗌
Internal Ring Distance Holes		Nr		Туре		Equally spaced Yes 🗌 No 🗌
External Ring Material		C45 🗆	42CrN	Mo4 🗌 50Mn		ormalized Quenced&Tempered
Internal Ring Material		C45 🗌	42CrN	Mo4 🗌 50Mn		ormalized Quenced&Tempered
Grease holes nr Type		Seals yes		no 🗆	Pa	aint no 🗆 yes 🗆
External Centering no D yes		ø		width	Т	olerance
Internal Centering no 🗆 yes		ø		width	Т	blerance
Other		Clearance			P	reload
ANNUAL QUANTITY				Attachments		
Note						

Data 5/12 Rev 0 Scheda n° S-03.1/4



-

6 6 6

Gears

Leonessa Brevini slewing rings can be manufactured with internal or external gear.

Our standard gears are with straight teeth, with pressure angle at 20° and with module from 2.5 to 16 mm, in quality class from IT8 to IT 12, according to ISO standards.

Other types of gears with pressure angles of 25° , 27° or more, helicoidally, chain-shaped, can be made on request.

Gear resistance

For normalized toothed wheels, the following tension values are admissible:

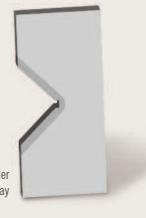
- 130 Mpa for standard working force
- 260 for maximum working force

For quenched and tempered toothed wheels in, the following tension values are admissible:

- 180 Mpa for standard working force
- 360 Mpa for maximum working force

In order to increase the resistance to wear or flexion of the tooth root, the gear can be heat treated by induction hardening, with side tooth profiles or side and bottom tooth profiles.

Leonessa Brevini Technical Department has an on-going updated software to test the correct geometry of the wheel/pinion mesh and the assessment of gear life cycle.



All Leonessa Brevini slewing rings have heat-treated bearing raceways with an induction hardening treatment.

The surface hardness grade is HRC 55-60, with an appropriate treatment depth suitable to the size of the rolling elements.

The treatment quality is guaranteed by modern equipment, ensuring a correct hardening cycle, along continuous controls performed by our own laboratory.

induction hardening of roller raceway

induction barden

Heat treatments

induction hardening of tooth side and bottom

induction hardening of ball raceway

induction hardening of entire gear

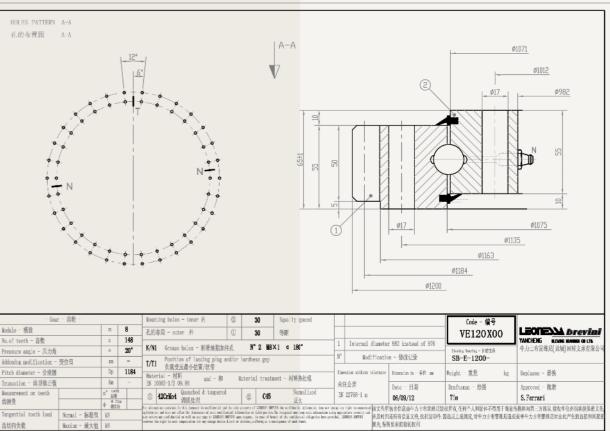
Materials

The steels used in the construction of Leonessa Brevini slewing rings are in accordance with international standards.

The most widely used steels are:

- C45
- 42CrMo4
- 50 Mn

These types of steel are chosen according to the slewing ring design and its application:


- normalized
- quenched and tempered

The below chart shows the average hardness:

	C45			42CrMo4					
	N/mm ²		ł	HB		N/mm ²		HB	
	min	max	min	max	min	max	min	max	
Normalized	580	-	172	-	800	-	240	-	
Quenched and tempered	630	780	190	235	850	950	255	283	

Rolling elements (balls and rollers) are made of tempered steel 100Cr6, with a surface hardness of HRC 63 \pm 3 and a precision grade 200 according to ISO 3290.

Leonessa Brevini slewing rings are manufactured with tole-

rances and backlashes whose values depend on the sle-

The tolerance values are indicated in the drawings, with an

As regards dimensions not indicated in the drawings plea-

wing ring dimensions and its application.

example here below.

se refer to ISO standard 2768.

Construction tolerances

Rotation torque

There are two types of rotation torques:

- Starting torque (Cavv): is the torque requested to put a resting slewing ring into rotation;
- Acceleration torque (Cacc): is the torque requested to the system containing the slewing ring to increase rotation speed in a determined period of time.

The starting torque is calculated by adding the pre-loading torque (Cp) of the slewing ring to the resistant friction torque (Catt) due to the charged rolling elements: Cavv = Cp + Catt [kNm]

The value of the pre-loading torque can be requested of La Leonessa, while the resistant friction torque is calculated in function of the friction coefficient, of loads and of dimensions using the following formula:

$$Catt = \left(\frac{5MR}{D_{pw}} + FA_{eq}\right) \times f \times \frac{D_{pw}}{2}$$

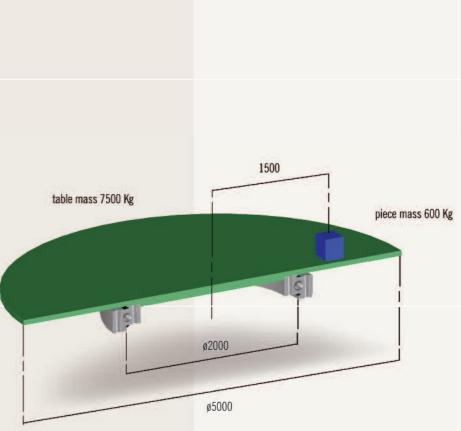
where f is the coefficient of friction, which assumes the following values $\mathbf{f} = 0.006$ for ball slewing rings

 $\mathbf{f} = 0.0075$ for roller slewing rings

Dpw = rolling diameter [m]

The acceleration torque is calculated by adding the preloading torque (Cp) of the slewing ring and the resistant friction torque (Catt) of the charged rolling elements to the moment of inertia of the masses involved: Cacc = Cp + Catt + Cin [kNm]

The calculation of the pre-loading torque and the resistant friction torque was previously illustrated, while the moment of inertia has:


$$Cin = \frac{\pi_{\times}(nf - ni) \times I}{30 \times t} \times 10^{-3}$$

where

nf = final rotation speed [rpm] **ni** = initial rotation speed [rpm] $\mathbf{t} = \text{time interval of acceleration [s]}$ I = sum of the moment of inertia of the masses referred to the rotation axis [kgm2]

In general, if the dimensions of the masses are negligible in respect to the distance between their barycentre and the rotation axis, the moment of inertia with respect to the rotation axis is given by the product of the mass expressed in kg multiplied by the square of the distance between the mass barycentre and the rotation axis expressed in meters.

Calculation example:

Rotating table

Diameter: 5m Table mass: 7500 kg Piece mass: 600 kg **Distance between piece and rotation axis:** 1,5m Bearing raceway diameter: 2 m Pre-loading torque: 30 kgm

The applied loads on the slewing ring are: Fa = 7500 kg + 600 kg = 8100 kg = 79.43 kN $Mr = 600 \text{ kg} \cdot 1.5 \text{ m} = 900 \text{ kgm} = 8.83 \text{ kNm}$

Starting torque calculation:

Cp = 30 kgm = 0.294 kNm

$$Satt = \left(\frac{5MR}{D_{pw}} + FA_{eq}\right) x f x \frac{D_{pw}}{2} = \left(\frac{5x8.83}{2} + 79.43\right) x \ 0.006 \ x \frac{2}{2} = 0.609 \ kNm$$

Cavv = Cp + Catt = 0.294 + 0.609 = 0.903 kNm

Calculation of the acceleration torque to increase rotation speed from 1 rpm to 6 rpm in 20 seconds: Moment of inertia of the table:

$$I_t = \frac{M \times R^2}{2} = \frac{7500 \times 2.5^2}{2} = 23437.5 \text{ kgm}^2$$

Moment of inertia of the piece: $lp = 600 , 1.52 = 1350 \text{ kgm}^2$ Total moment of inertia (neglecting the moment of inertia of the rotating ring): $I = It + Ip = 23437 + 1350 = 24787 \text{ kgm}^2$

 $Cin = \frac{\pi \times (nf - ni) \times I}{30 \times t} \times 10^{-3} = \frac{\pi \times (6 - 1) \times 24787}{30 \times 20} \times 10^{-3} = 0.649 \text{ kNm}$

Cacc = Cp + Catt + Cin = 0.294 + 0.609 + 0.649= 1.552 kNm

Slewing ring assembly

Transport, packaging and preparation

Leonessa Brevini slewing rings must be transported and moved in horizontal position, avoiding any blows or damage, especially in radial direction.

Since it is a machined component, slewing rings of any size must be handled carefully. The slewing ring is packaged on pallets, fastened down, and protected by an anti-corrosion oil film.

This protection allows for good maintenance of the surfaces for about 6 months, but only if the slewing ring is stored in a closed place, protecting it from atmospheric agents.

During unpacking of the slewing ring, take care not to damage the seals. The bearing must be degreased using commercial solvents, taking care that these do not attack the seals or enter the bearing raceways. We advise not to use solvents containing chlorides as these would damage the surfaces.

Slewing ring identification:

Every Leonessa Brevini slewing ring is identified by stamped lettering close to the ball/roller loading plug The printing states:

- Year and month of construction
- Progressive serial number

Example: 99061654

99 = construction year
6 = construction month
1654 = internal progressive number

We advise noting the serial number on the machine or system logbook. This will be useful in tracing the product once the part is installed as paint or guards may prevent it being able to be seen.

Positioning the bearing

Always observe the mark made on Leonessa Brevini bearings to make sure that they are positioned properly and to guarantee them a long and efficient life.

• Hardness gap of hardening treatment:

it is shown by a letter "S" stamped on a surface on the gear ring. On the smooth ring it can be found close to the ball/roller loading plug. During assembly always make sure that the hardening point of union are outside the maximum load area.

• Gear teeth eccentricity:

This is detected by means of three blue painted teeth, and during assembly it is necessary to ensure that in this position the clearance between the sides of the teeth on the wheel and that of the pinion is between 0.03 and 0.05 times the gear module.

• Grease nipples:

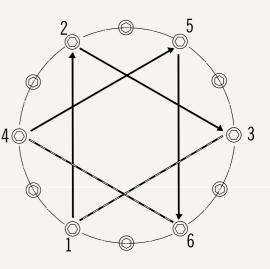
Leonessa Brevini slewing rings are provided with an adequate number of grease nipples. These nipples must be easily accessible positions.

Fastening bolts

Before connecting together the Leonessa Brevini slewing rings and the support structures, always make sure that the fastening bolts are to the required type (8.8-10.9-12.9).

The bolts must be lightly oiled ($\mu = 0,14$).

Hardened and tempered flat washers can be used, above all for normalized steel bearings, while it is strictly forbidden to use any kind of flexible washer which would void any warranty.


Mount all the bolts on the first ring and tighten slightly. Continue to tighten according to the order shown in the figure below.

8,8 640 per < M16 660 per > M16

Level of re

Tightening torque

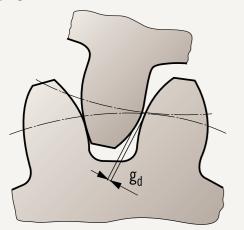
The bolts must be tightened using dynamometric wrenches or hydraulic systems. The following table shows the tightening torques for bolts of quality classes 8.8 and 10.9.

sistance according to UNI EN ISO 898-1					
10,9					
mit tensile strength Rp 0.2 in N/mm²					
940					
Assembly and tighte- ning torque Nm	Tensioning force N	Assembly and tighte- ning torque Nm			
78	56000	117			
126	77000	184			
193	106000	279			
270	129000	387			
387	166000	558			
522	208000	747			
666	239000	954			
990	315000	1395			
1350	385000	1890			
126 193 270 387 522 666 990	77000 106000 129000 166000 208000 239000 315000	184 279 387 558 747 954 1395			

Assembly

Installing the pinion

The wheel and pinion are coupled by bringing the three red painted teeth on the wheel, which represent the maximum eccentricity, into their corresponding position on the pinion. Then regulate the clearance between the sides of the teeth on the wheel and those of the pinion, making sure that it is at least:


gd = 0.03-0,05*module

This procedure must be repeated when there is more than one pinion.

During installation, always check the vertical alignment between the teeth of the wheel and pinion.

We recommend recording all data in the machine/system logbook.

When installation is completed, we recommend turning the system a few times before lubrication to make sure that the coupling is correct.

Lubrication

Before starting the system the gear teeth should be greased so that the sides of the teeth are covered completely. Leonessa Brevini slewing ring is supplied with the raceways already lubricated; therefore the lubrication of these is necessary after the first 50 working hours (see paragraph on maintenance).

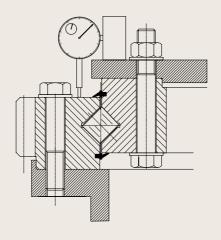
The standard grease used corresponds to ISO L-X-BCHB-2 and DIN 51825 KP2K-20 classifications.

The lubricants shown in the table are suitable for use at temperatures between -20°C and + 120°C. For use at lower temperatures, special grease must be used.

The following table shows some typical values of greases used in raceway systems.

Grease	Rolling system	Gear teeth
AGIP	GRMU EP2	SEAGUS 60
BR	LS-EP2	Energol WRL
ESSO	Becom EP2	Surret fluid NX
SHELL	Calithia EP2	Malleus Fluid C
MOBIL	Mobilux EP2	Mobiltac 81

Consistency NLGI = 2; Drip point ASTM °C = 185; Worked penetration dmm = 280; Basic oil viscosity at 40°C mm 2 /s = 160


Estimating machine clearance

After mounting the bearing, machine clearance must be checked. The value recorded will be used as a reference for future measurements during operations and show the bearing's state of wear. The distance must be measured between the upper and lower structure, as close as possible to the bearing raceway to reduce the influence of elastic deformation of the connecting structure.

Operations

- 1 Use a 0.01 mm precision comparator, positioned as shown and reset to zero.
- **2** Bring the machine to its maximum load capacity
- 3 Record the variation of the instrument
- **4** Repeat the test at various angle positions

The maximum value recorded represents the initial clearance of the machine itself.

Periodical checks must be made on lubrication, bolt tightening, the state of the seals and machine clearance.

Maintenance

The raceways must be lubricated at intervals depending on the operating conditions.

We recommend greasing the raceway after the first 50 hours of use, and then after every 100 hours of use. Before and after long periods of idleness, the bearing must be greased again. The grease is pumped while the bearing is rotating and is considered complete when the grease overflows from the seal forming a light film, which also serves as a seal. The grease should be brushed or sprayed on the gear teeth and must completely cover the sides of the teeth. Where it is not possible to visually check the presence of grease, we recommend greasing every three or six months, according to the use of the machine. The preceding table provides information on the greases to use.

Bolts

After the first 100 working hours, the tightness of the bolts must be checked. Afterwards, we recommend yearly inspections. Checks should be made more frequently when special working conditions required it. If loose or worn bolts are found during inspections, they must be replaced.

Maintenance

Seals

The seals mounted on the Leonessa Brevini slewing rings are manufactured in a basic nitrile rubber elastomer, which resists well to temperatures and atmospheric agents.

During the life of the slewing ring we recommend regular visual inspections on the state of the seals and do not hesitate to replace them if they appear to have deteriorated or become fragile.

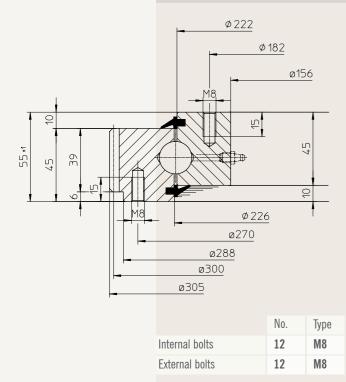
Machine clearance

As described previously, the first measurement recorded is the reference for future measurements which represent the wear of the slewing ring raceways.

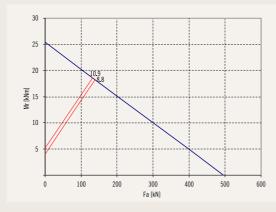
It should be measured once a year. The maximum acceptable increase before replacement of the slewing ring depends on the diameter of the bearing, on the type and size of the rolling elements (balls or rollers), on the type of application for which greater limits of wear can be accepted without operations are not compromised. When clearance reaches four times the initial value, please contact our Technical Department for an evaluation of the state of wear of the slewing ring.

Slewing rings

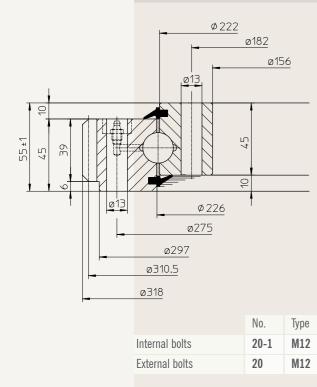
Leonessa Brevini product range includes versions with internal, external and without gear. Slewing rings with one row of balls, two rows of balls or with one row of rollers are available. In addition to the products shown here, Leonessa Brevini can manufacture slewing rings according to customer specifications.

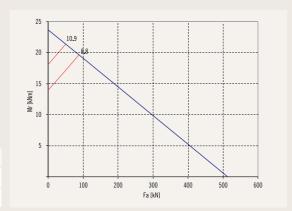


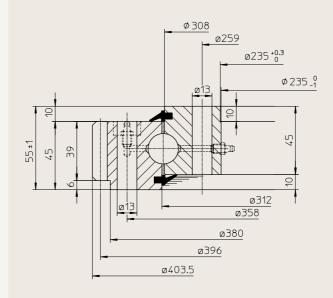
Mania triven


Single row of balls

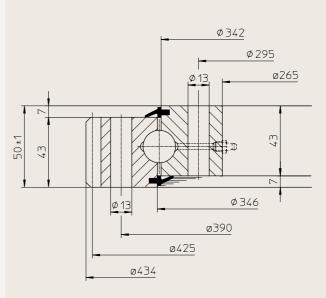
Single row of balls **External gear**


Cod. VE030A00


Module	2,5
N. of teeth	120
Addendum modification	0
kN - Normal tangential force	3,6
kN - Maximum tangential force	7,2
Weight	17,5

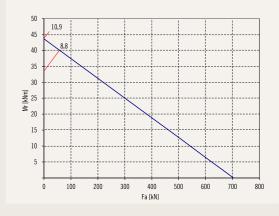

Cod. VE031A01

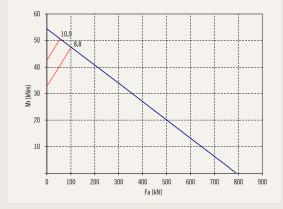
Module	4,5
N. of teeth.	69
Addendum modification	0
kN - Normal tangential force	11,6
kN - Maximum tangential force	23,2
Weight	17,5



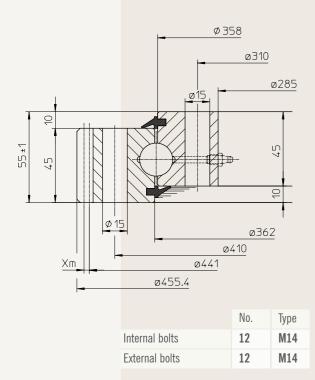
Cod. VE040A01

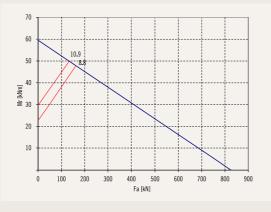
	N.	Tipo
Internal bolts	28-1	M12
External bolts	24	M12


Cod. VE043A05

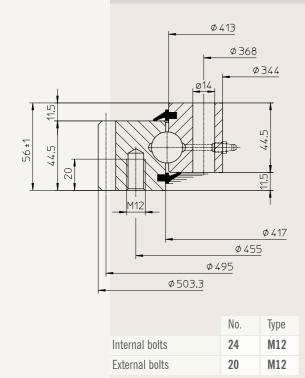

	N.	Tipo
Internal bolts	24	M12
External bolts	24	M12

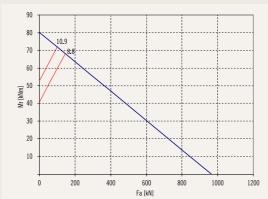
Module	4,5
N. of teeth	88
Addendum modification	0
kN - Normal tangential force	8,4
kN - Maximum tangential force	16,8
Weight	25

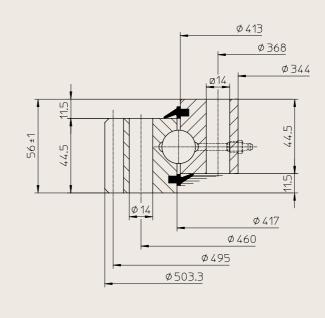

Module	5
N. of teeth	85
Addendum modification	0
kN - Normal tangential force	14,4
kN - Maximum tangential force	28,8
Weight	30



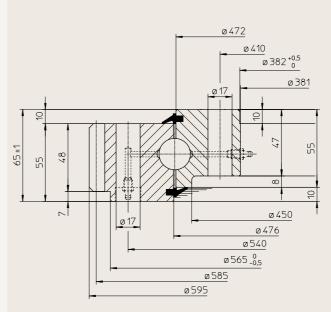
Single row of balls **External gear**


Cod. VE045A00


Module	4,5
N. of teeth	98
Addendum modification	3,15
kN - Normal tangential force	10,1
kN - Maximum tangential force	20,2
Weight	29

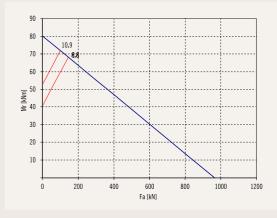

Cod. VE050A02

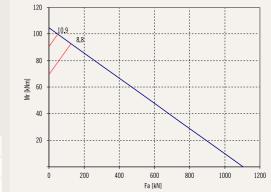
Module	5
N. of teeth.	99
Addendum modification	0
kN - Normal tangential force	10,4
kN - Maximum tangential force	20,8
Weight	31



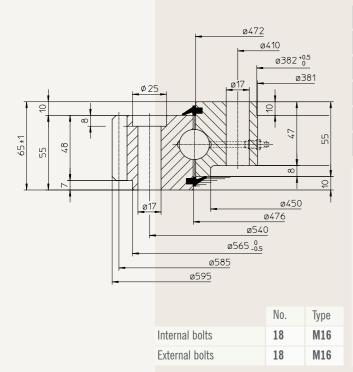
Cod. VE050A10

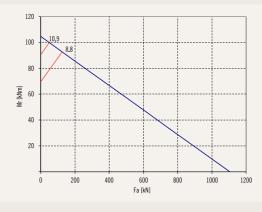
	No.	Туре
Internal bolts	24	M12
External bolts	20	M12


Cod. VE059A00

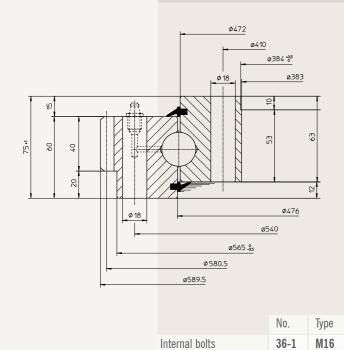

	No.	Туре
Internal bolts	18	M16
External bolts	18	M16

Module	5
N. of teeth	99
Addendum modification	0
kN - Normal tangential force	10,4
kN - Maximum tangential force	20,8
Weight	31

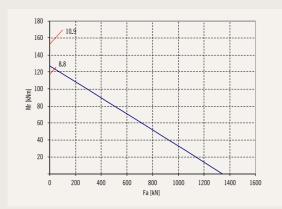

Module	5
N. of teeth	117
Addendum modification	0
kN - Normal tangential force	10,4
kN - Maximum tangential force	20,8
Weight	58



Single row of balls **External gear**

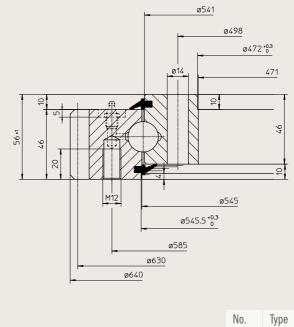

Cod. VE059A10

Module	5
N. of teeth	117
Addendum modification	0
kN - Normal tangential force	10,4
kN - Maximum tangential force	20,8
Weight	58

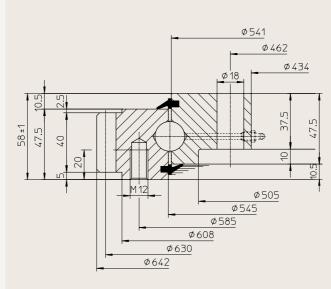


Cod. VE059A22

External bolts

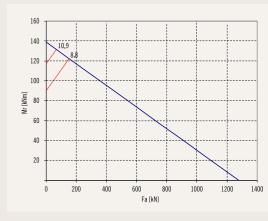

Module	4,5
N. of teeth.	129
Addendum modification	0
kN - Normal tangential force	9,7
kN - Maximum tangential force	19,4
Weight	62

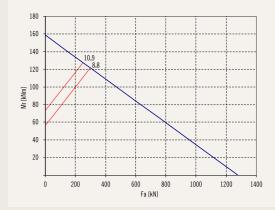
M16


36

Cod. VE064A00

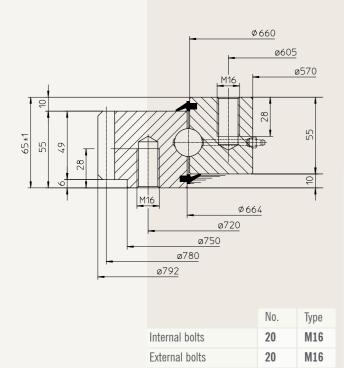
	INO.	туре
Internal bolts	40-1	M12
External bolts	40	M12

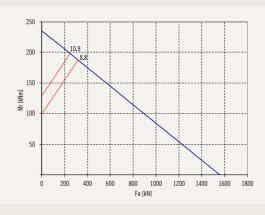

Cod. VE064A07


	No.	Туре
Internal bolts	14	M16
External bolts	14	M12

42 LEORESSA brevini

Module	6
N. of teeth	105
Addendum modification	0
kN - Normal tangential force	14,3
kN - Maximum tangential force	28,6
Weight	45

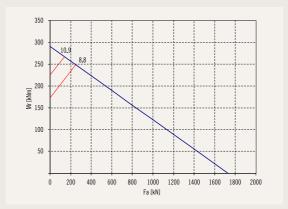

Module	6
N. of teeth	105
Addendum modification	0
kN - Normal tangential force	14,4
kN - Maximum tangential force	28,8
Weight	40



Single row of balls **External gear**

Cod. VE079A00

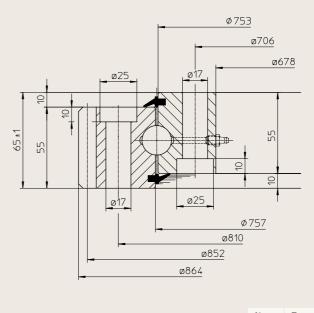
Module	6
N. of teeth	130
Addendum modification	0
kN - Normal tangential force	15,0
kN - Maximum tangential force	30,0
Weight	92


Cod. VE084A01

Internal bolts

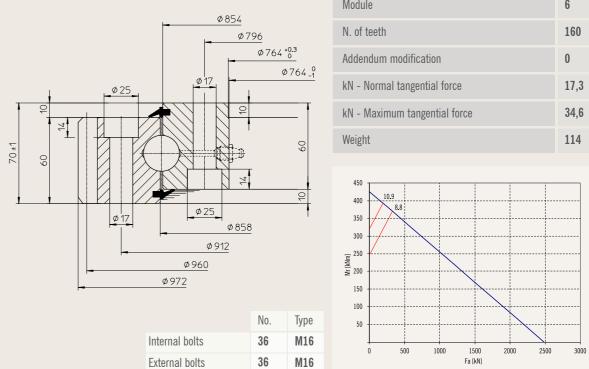
External bolts

Module	6
N. of teeth.	138
Addendum modification	0
kN - Normal tangential force	14,1
kN - Maximum tangential force	28,2
Weight	70


M16

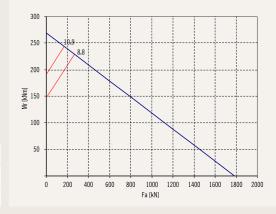
M12

32


18

Cod. VE086A00

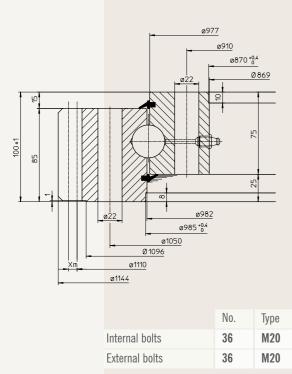
	No.	Туре
Internal bolts	24	M16
External bolts	24	M16


Cod. VE097A00

	No.	Тур
Internal bolts	36	M1(
External bolts	36	M1

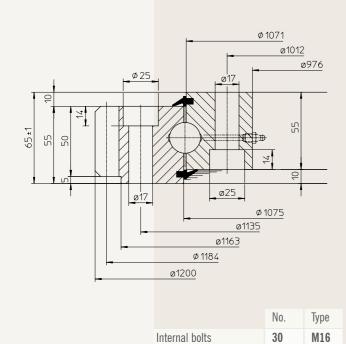
LEONESSA brevini 44 YANCHENG SLEWING BEARING

Module	6
N. of teeth	142
Addendum modification	0
kN - Normal tangential force	14,9
kN - Maximum tangential force	29,8
Weight	83



Module 6
N. of teeth 160
Addendum modification 0
kN - Normal tangential force 17,3
kN - Maximum tangential force 34,6
Weight 114

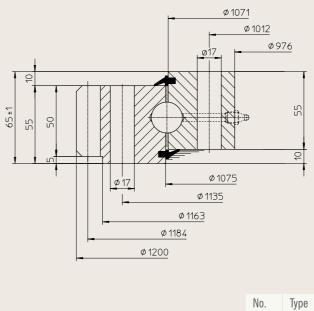
Single row of balls **External gear**


Cod. VE114A05

Module	10
N. of teeth	111
Addendum modification	8
kN - Normal tangential force	57,3
kN - Maximum tangential force	114,6
Weight	214

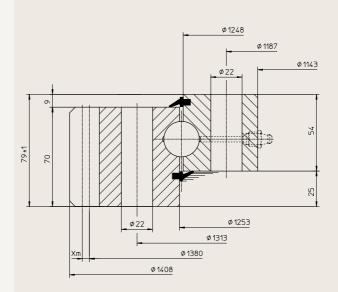
Cod. VE120A01

External bolts


30

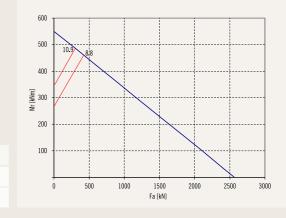
M16

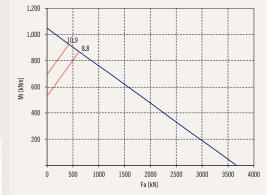
Module	8
N. of teeth.	148
Addendum modification	0
kN - Normal tangential force	20,8
kN - Maximum tangential force	41,6
Weight	142,5



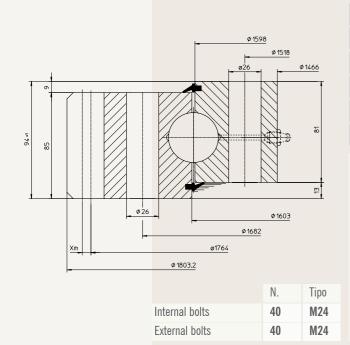
Cod. VE120A05

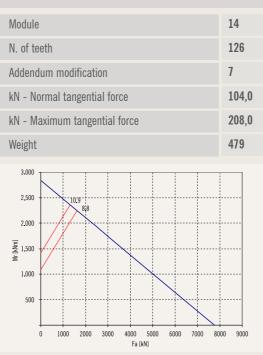
	No.	lype
Internal bolts	30	M16
External bolts	30	M16


Cod. VE140A01

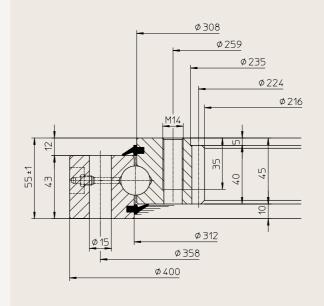

	No.	Туре
Internal bolts	36	M20
External bolts	36	M20

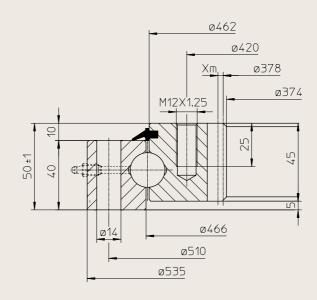
Module	8
N. of teeth	148
Addendum modification	0
kN - Normal tangential force	20,8
kN - Maximum tangential force	41,6
Weight	142,5


Module	10
N. of teeth	138
Addendum modification	5
kN - Normal tangential force	43,9
kN - Maximum tangential force	87,8
Weight	213



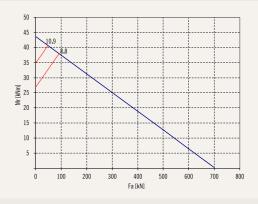
Single row of balls **External gear**

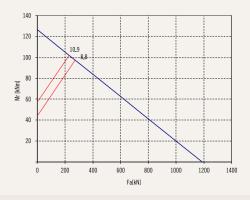

Cod. VE180A00


Internal gear

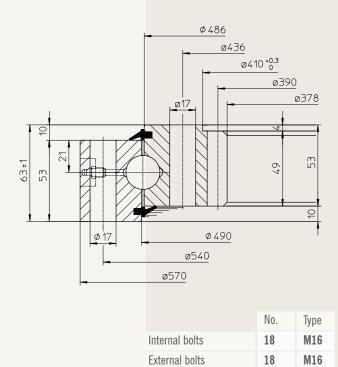
Cod. VI040A01

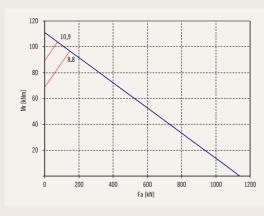
	N.	Tipo
Internal bolts	16	M14
External bolts	24	M14


Cod. VI053A00

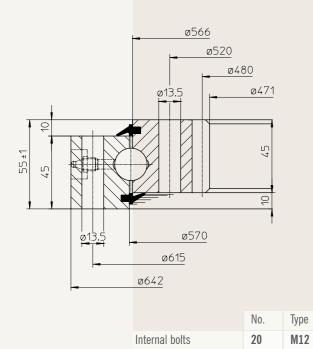

	N.	Tipo
Internal bolts	24	M12
External bolts	24	M12

Modulo	4
N. of teeth	56
Addendum modification	0
kN - Normal tangential force	7,2
kN - Maximum tangential force	14,4
Weight	26,5


Module	6
N. of teeth	63
Addendum modification	3
kN - Normal tangential force	19,5
kN - Maximum tangential force	39,0
Weight	35

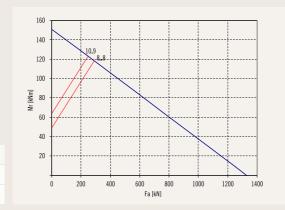


Single row of balls Internal gear

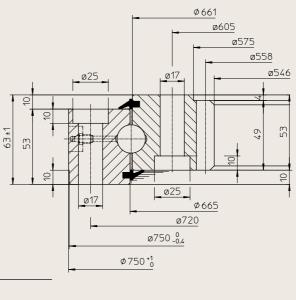

Cod. VI057A01

Module	6
N. of teeth	65
Addendum modification	0
kN - Normal tangential force	16,2
kN - Maximum tangential force	32,4
Weight	51,5

Cod. VI064A05

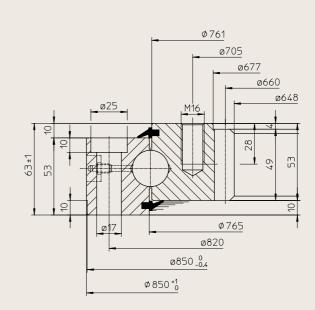


External bolts


20

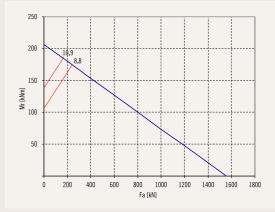
M12

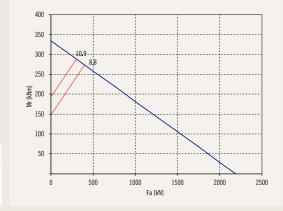
Module	5
N. of teeth.	96
Addendum modification	0
kN - Normal tangential force	11,3
kN - Maximum tangential force	22,6
Weight	47



Cod. VI075A00

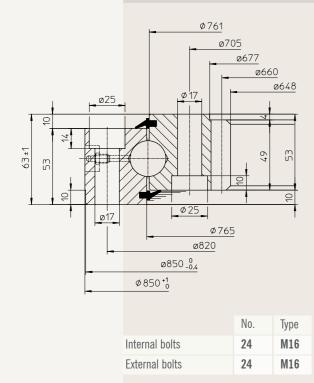
Internal bolts 20	Туре
	M16
External bolts 20	M16

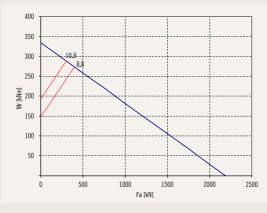

Cod. VI085A05


		No.	Туре
Inte	ernal bolts	24	M16
Ext	ernal bolts	24	M16

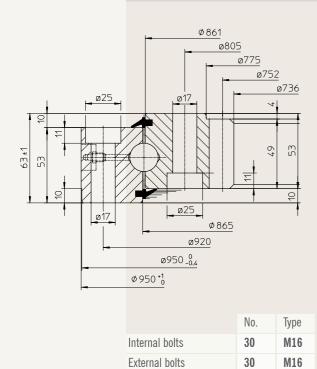
Module	6
N. of teeth	93
Addendum modification	0
kN - Normal tangential force	16,2
kN - Maximum tangential force	32,4
Weight	76

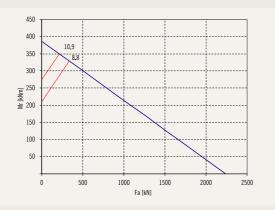
Module	6
N. of teeth	110
Addendum modification	0
kN - Normal tangential force	18,7
kN - Maximum tangential force	37,4
Weight	86,5

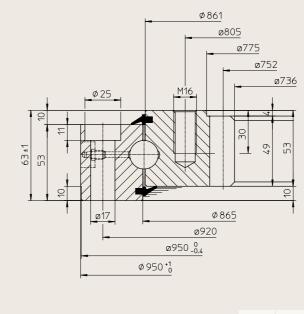



уре **M16**

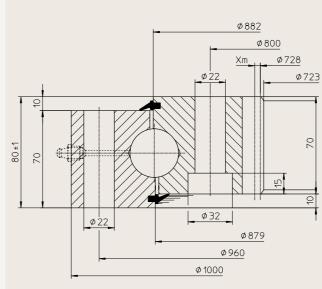
Single row of balls **Internal gear**


Cod. VI085A08


Module	6
N. of teeth	110
Addendum modification	0
kN - Normal tangential force	18,7
kN - Maximum tangential force	37,4
Weight	86,5

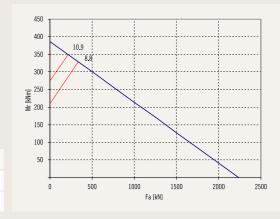

Cod. VI095A01

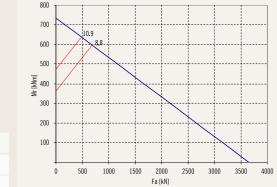
Module	8
N. of teeth.	94
Addendum modification	0
kN - Normal tangential force	22,1
kN - Maximum tangential force	44,2
Weight	101,5



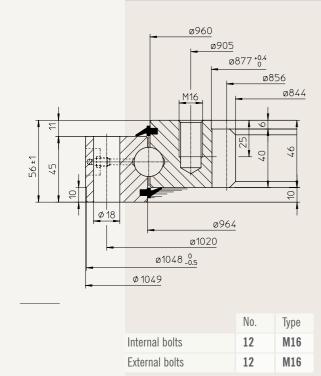
Cod. VI095A14

	No.	Туре
Internal bolts	30	M16
External bolts	30	M16


Cod. VI100A00

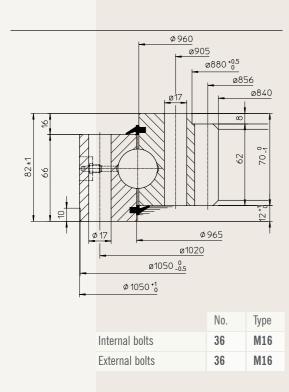

	No.	Туре
Internal bolts	36	M20
External bolts	36	M20

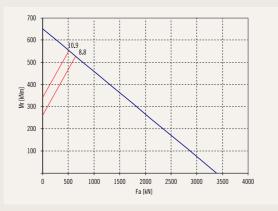
Module	8
N. of teeth	94
Addendum modification	0
kN - Normal tangential force	22,1
kN - Maximum tangential force	44,2
Weight	101,5

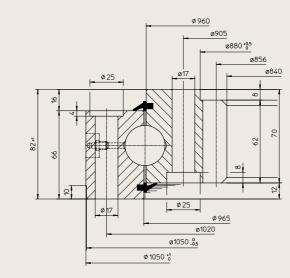

Module	8
N. of teeth	91
Addendum modification	4
kN - Normal tangential force	44,5
kN - Maximum tangential force	89,0
Weight	97,5



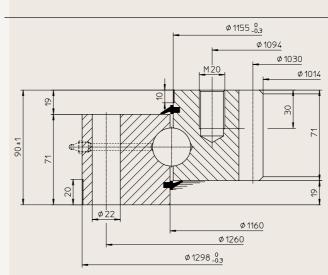
Single row of balls **Internal gear**


Cod. VI104A04


Module	8
N. of teeth	107
Addendum modification	0
kN - Normal tangential force	18,0
kN - Maximum tangential force	36,0
Weight	89

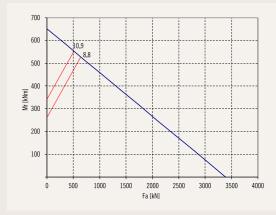

Cod. VI105A03

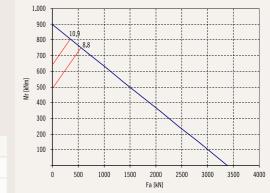
Module	8
N. of teeth.	107
Addendum modification	0
kN - Normal tangential force	28,9
kN - Maximum tangential force	57,8
Weight	141,5



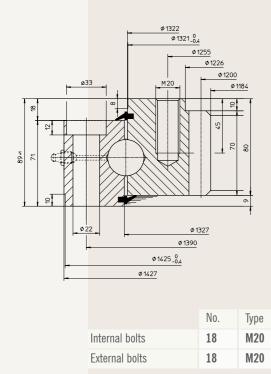
Cod. VI105A04

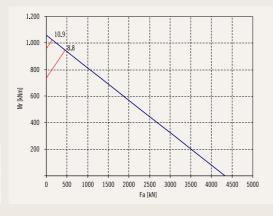
	No.	Туре
Internal bolts	36	M16
External bolts	36	M16


Cod. VI129A00

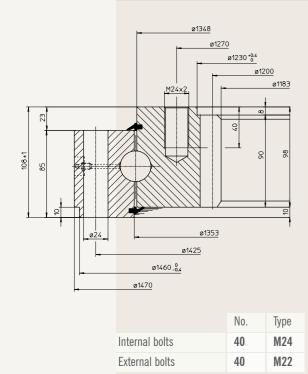

		No.	Туре
Intern	al bolts	36	M20
Extern	al bolts	36	M20

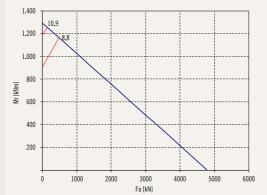
Module	8
N. of teeth	107
Addendum modification	0
kN - Normal tangential force	28,9
kN - Maximum tangential force	57,8
Weight	141,5

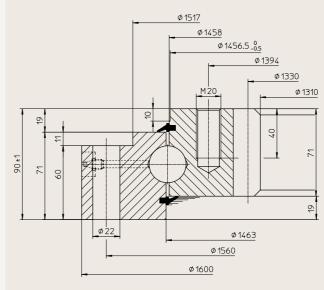

_	Module	10
	N. of teeth	103
	Addendum modification	0
	kN - Normal tangential force	55,5
	kN - Maximum tangential force	111,0
	Weight	256



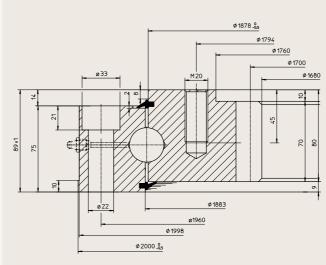
Single row of balls **Internal gear**


Cod. VI142A01


Module	8
N. of teeth	150
Addendum modification	0
kN - Normal tangential force	40,0
kN - Maximum tangential force	80,0
Weight	260

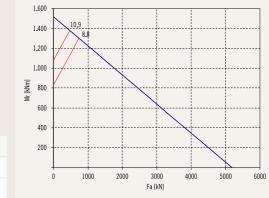

Cod. VI147A00

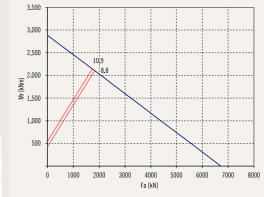
Module	10
N. of teeth.	120
Addendum modification	0
kN - Normal tangential force	52,1
kN - Maximum tangential force	104,2
Weight	381



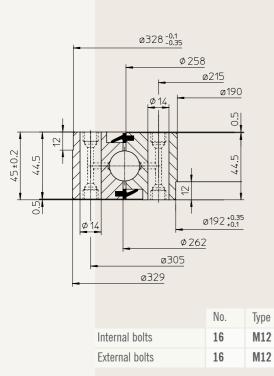
Cod. VI160A01

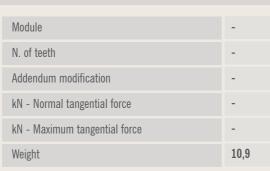
No	o. Type
Internal bolts 48	3 M20
External bolts 48	3 M20

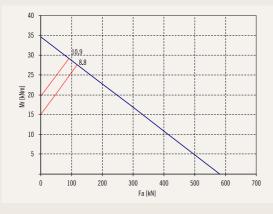

Cod. VI200A01


	No.	Туре
Internal bolts	18	M20
External bolts	18	M20

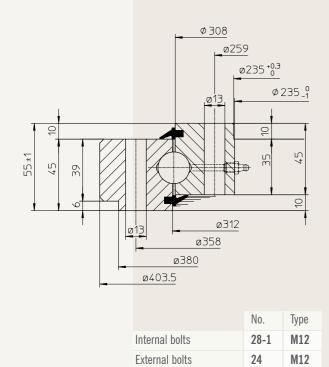
Module	10
N. of teeth	133
Addendum modification	0
kN - Normal tangential force	55,5
kN - Maximum tangential force	111,0
Weight	295

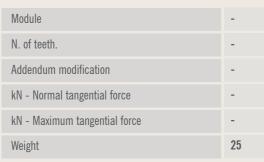

Module	10
N. of teeth	170
Addendum modification	0
kN - Normal tangential force	45,6
kN - Maximum tangential force	91,2
Weight	515

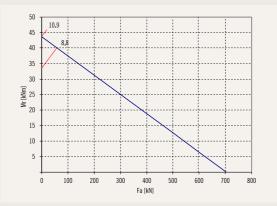


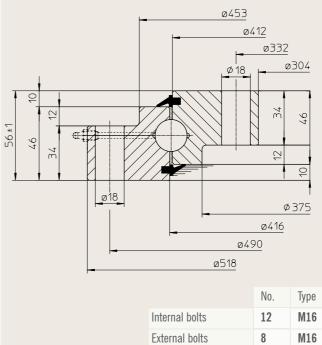


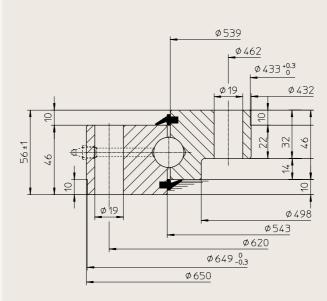
Single row of balls Without gear


Cod. VS032A02

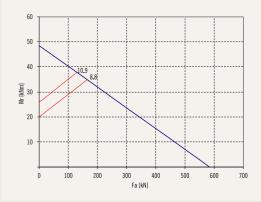


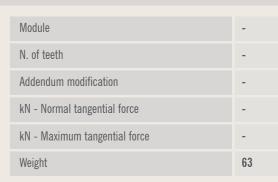



Cod. VS040A00

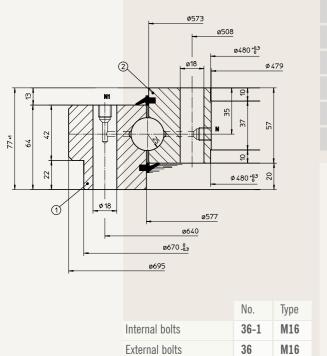


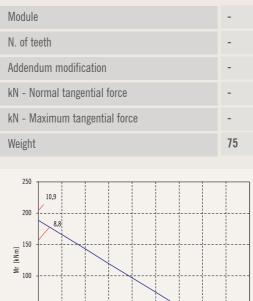
Cod. VS051A03


Cod. VS064A08



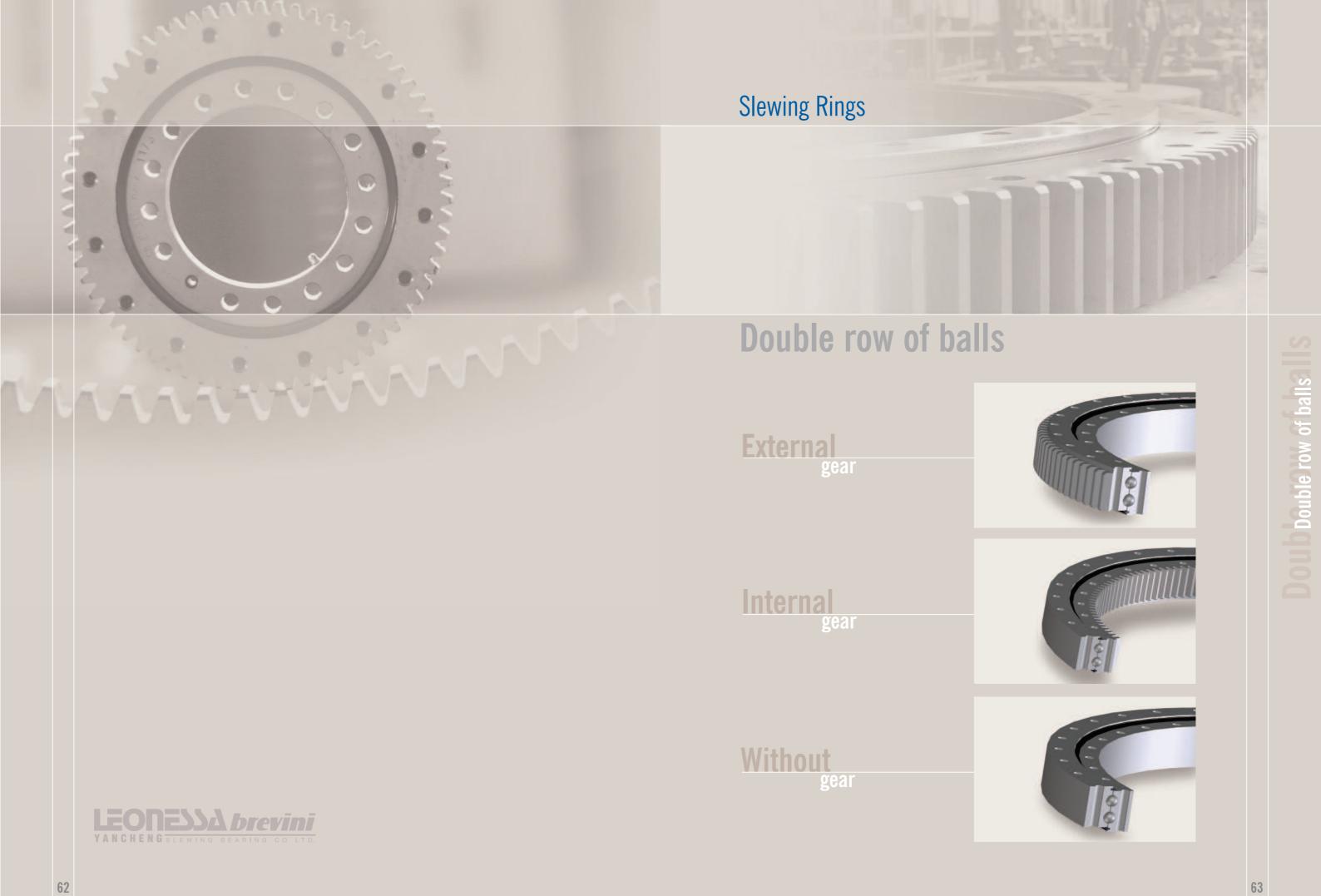

	No.	Туре
Internal bolts	14	M18
External bolts	10	M18





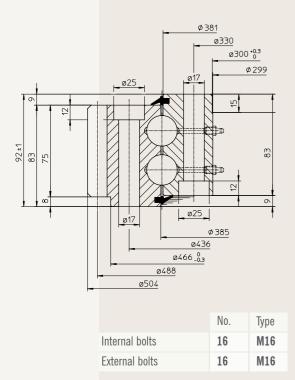
Single row of balls Without gear

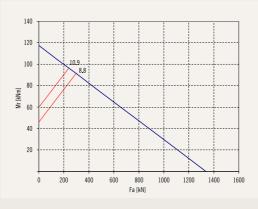
Cod. V5069A06



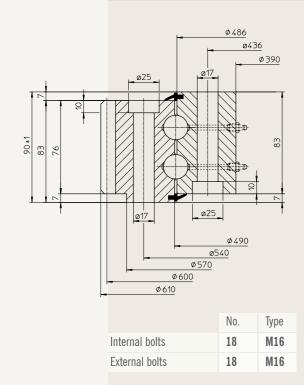
0 200 400 600 800 1000 1200 1400 1600 1800 Fa [kN]

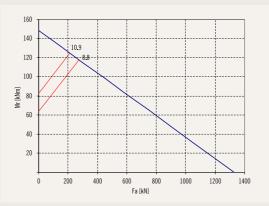
LEONESSA brevini 60 YANCHENG SLEWING BEARING

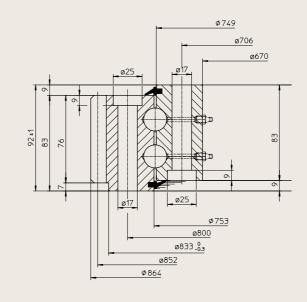




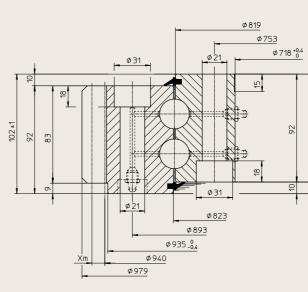
Double row of balls **External gear**


Cod. VE050B01


Module	8
N. of teeth	61
Addendum modification	0
kN - Normal tangential force	29,2
kN - Maximum tangential force	58,4
Weight	64

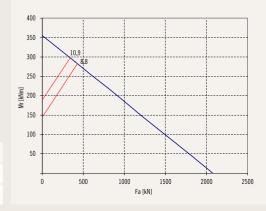

Cod. VE061B00

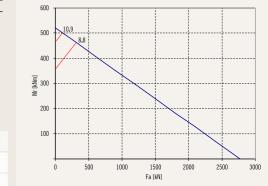
Module	6
N. of teeth.	100
Addendum modification	0
kN - Normal tangential force	18,7
kN - Maximum tangential force	37,4
Weight	98



Cod. VE086B03

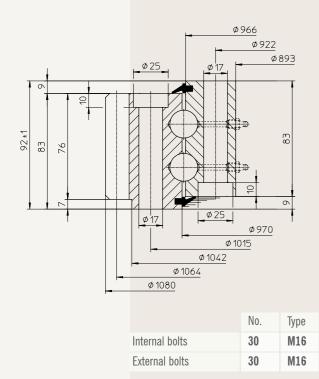
	N.	Туре
Internal bolts	24	M16
External bolts	24	M16

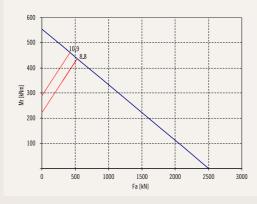

Cod. VE098B00


	N.	Туре
Internal bolts	36	M20
External bolts	36	M20

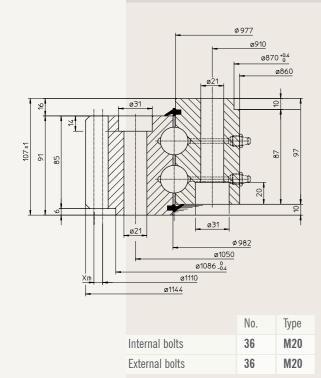
Module	6
N. of teeth	142
Addendum modification	0
kN - Normal tangential force	21,6
kN - Maximum tangential force	43,2
Weight	110

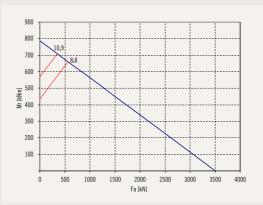
	Module	10
	N. of teeth	94
_	Addendum modification	11
	kN - Normal tangential force	60,1
	FkN - Maximum tangential force	120,2
	Weight	208

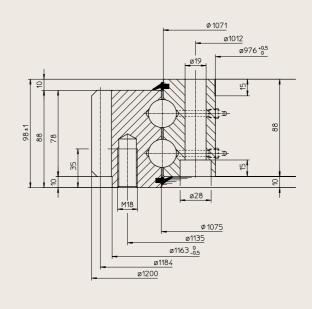



LEORESSA brevini YANGHENG SLEWING BEARING CO LTD.

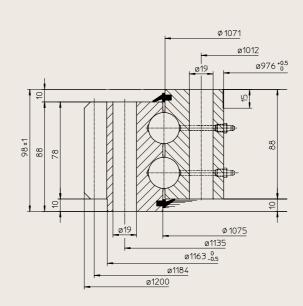
Double row of balls **External gear**


Cod. VE108B03


Module	8
N. of teeth	133
Addendum modification	0
kN - Normal tangential force	36,4
kN - Maximum tangential force	72,8
Weight	157

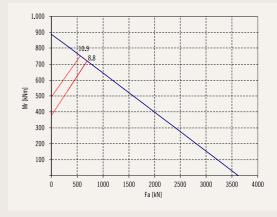

Cod. VE114B00

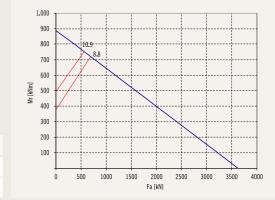
Module	10
N. of teeth.	111
Addendum modification	8
kN - Normal tangential force	73,9
kN - Maximum tangential force	147,8
Weight	267



Cod. VE120B00

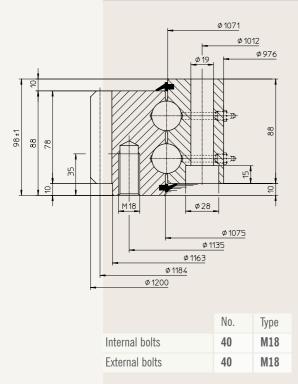
	N.	Туре
Internal bolts	36	M18
External bolts	36	M18


Cod. VE120B01

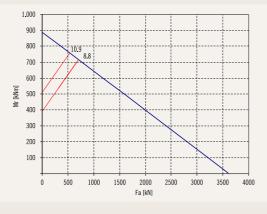

	N.	Туре
Internal bolts	36	M18
External bolts	36	M18

Module	8
N. of teeth	148
Addendum modification	0
kN - Normal tangential force	37,4
kN - Maximum tangential force	74,8
Weight	210

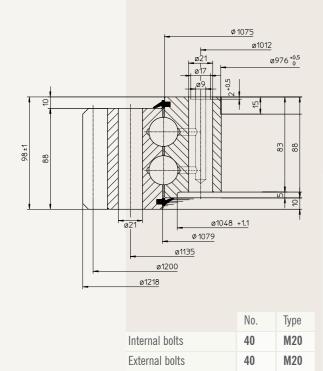
Module	8
N. of teeth	148
Addendum modification	0
kN - Normal tangential force	37,4
FkN - Maximum tangential force	74,8
Weight	210

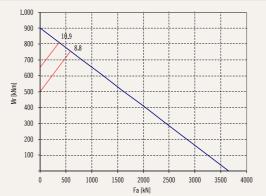


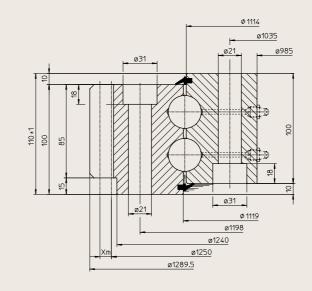
JOUD EDouble row of balls


LEORESSA brevini YANGHENG SLEWING BEARING CO LTD.

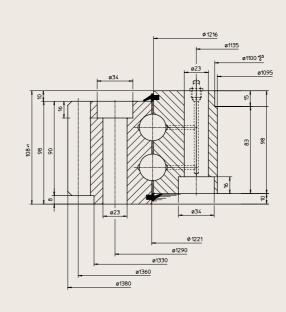
Double row of balls **External gear**


Cod. VE120B12


Module	8
N. of teeth	148
Addendum modification	0
kN - Normal tangential force	44,9
kN - Maximum tangential force	89,8
Weight	210

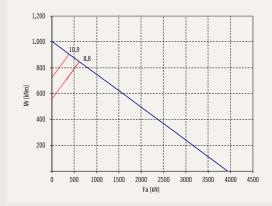

Cod. VE122B00

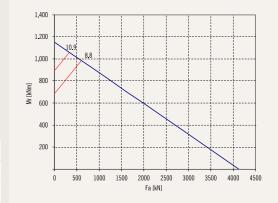
Module	10
N. of teeth.	120
Addendum modification	0
kN - Normal tangential force	45,7
kN - Maximum tangential force	91,4
Weight	211



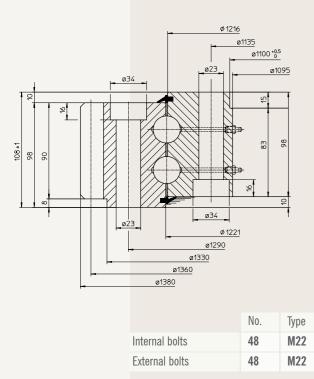
Cod. VE129B00

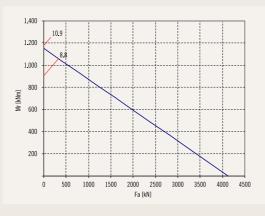
	N.	Туре
Internal bolts	40	M20
External bolts	40	M20


Cod. VE138B04

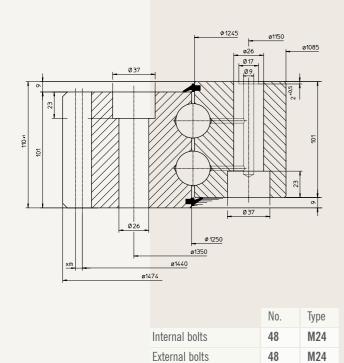

	N.	Туре
Internal bolts	36	M22
External bolts	36	M22

Module	10
N. of teeth	125
Addendum modification	10,5
kN - Normal tangential force	73,9
kN - Maximum tangential force	147,8
Weight	340

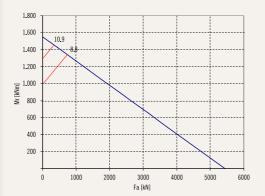

Module	10
N. of teeth	136
Addendum modification	0
kN - Normal tangential force	64,8
FkN - Maximum tangential force	129,6
Weight	350

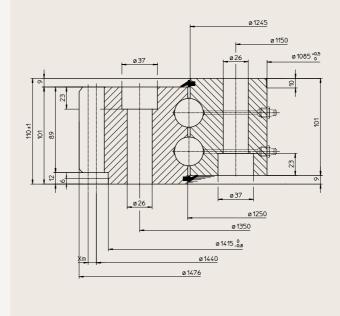

DOUDEDouble row of balls S

LEORESSA brevini YANG HENG SLEWING BEARING CO LTD.


Cod. VE138B05

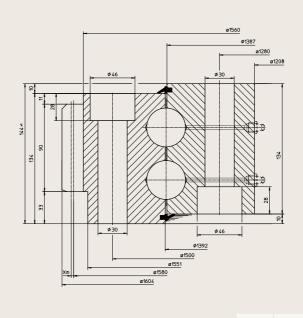
Module	10
N. of teeth	136
Addendum modification	0
kN - Normal tangential force	64,8
kN - Maximum tangential force	129,6
Weight	350

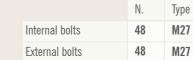

Cod. VE147B01


External bolts

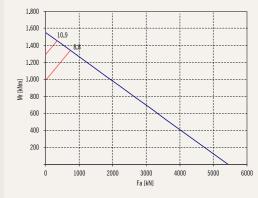
48

Module	12
N. of teeth.	120
Addendum modification	6
kN - Normal tangential force	114,7
kN - Maximum tangential force	229,4
Weight	503



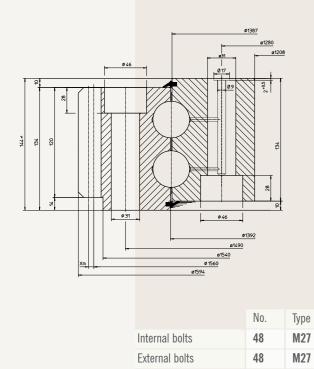

Cod. VE147B03

	N.	Туре
Internal bolts	48	M24
External bolts	48	M24

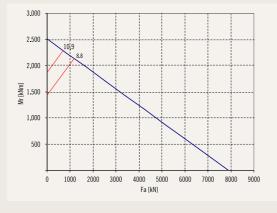

Cod. VE160B00

LEONESSA brevini 70 YANCHENGSLEWING BEARING

Module	10
N. of teeth	144
Addendum modification	8,6
kN - Normal tangential force	77,3
kN - Maximum tangential force	154,6
Weight	503



Module	10
N. of teeth	158
Addendum modification	2,5
kN - Normal tangential force	78,2
FkN - Maximum tangential force	156,4
Weight	698

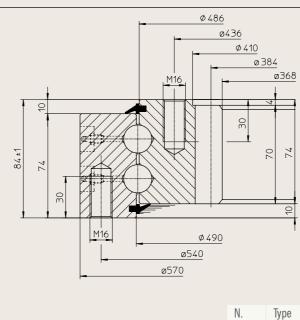


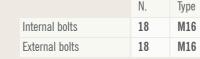
VANGHENGSLEWING BEARING COLLT. 71

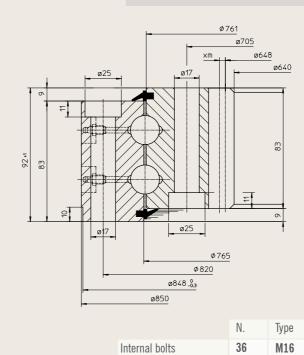
Cod. VE160B04

Module	12
N. of teeth	130
Addendum modification	6
kN - Normal tangential force	125,2
kN - Maximum tangential force	250,4
Weight	700

Cod. VE163B01

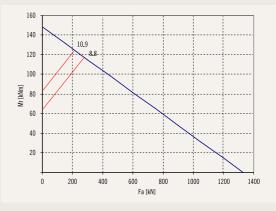



Module	14
N. of teeth.	113
Addendum modification	14
kN - Normal tangential force	168,0
kN - Maximum tangential force	336,0
Weight	800


Internal gear

Cod. VI057B02

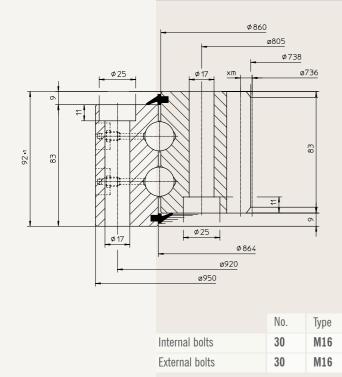
Cod. VI085B00


External bolts

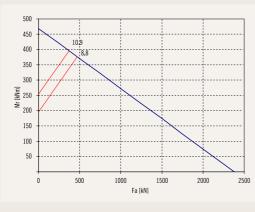
M16

36

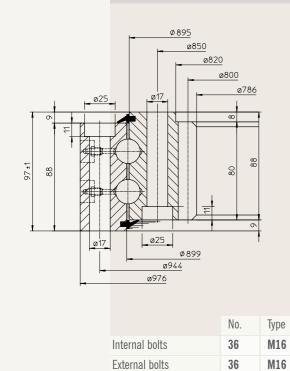
-	Module	8
		Ŭ.
	N. of teeth	48
	Addendum modification	0
	kN - Normal tangential force	31,6
	kN - Maximum tangential force	63,2
	Weight	77

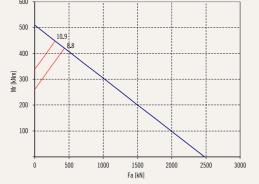


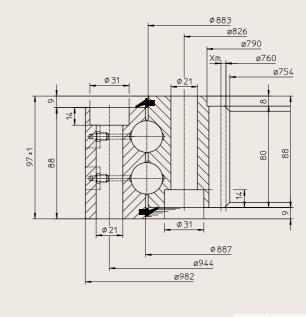
Module	8
N. of teeth.	81
Addendum modification	4
kN - Normal tangential force	46,3
kN - Maximum tangential force	92,6
Weight	127



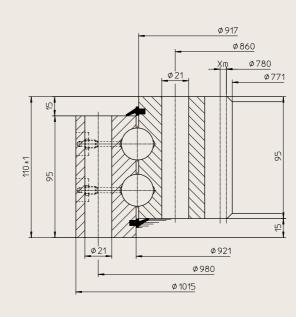
JOUD EDouble row of balls S

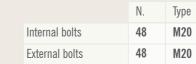

Cod. VI095B01


Module	8
N. of teeth	92
Addendum modification	8
kN - Normal tangential force	55,6
kN - Maximum tangential force	111,2
Weight	158

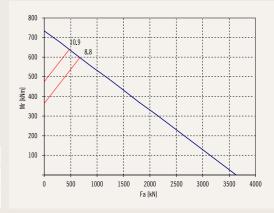

Cod. VI097B06

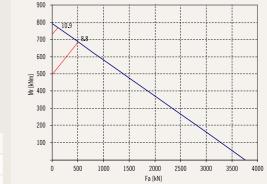
Module	8
N. of teeth.	100
Addendum modification	0
kN - Normal tangential force	41,7
kN - Maximum tangential force	83,4
Weight	153
c00	



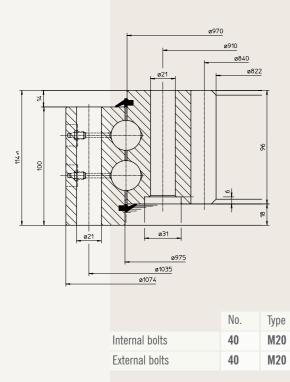

Cod. VI098B03

		N.	Туре
l	nternal bolts	36	M20
E	xternal bolts	36	M20

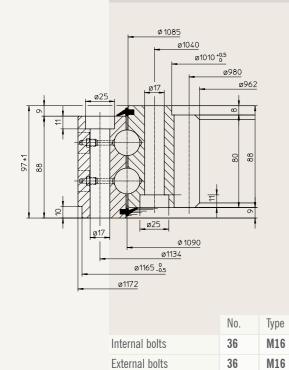

Cod. VI101B00

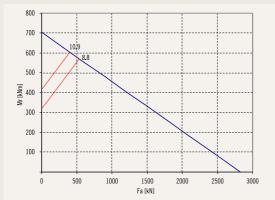


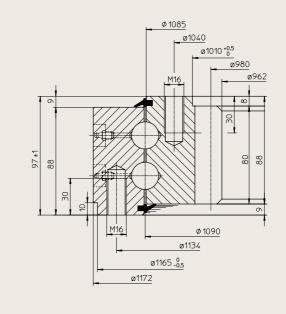
Module	8
N. of teeth	95
Addendum modification	4
kN - Normal tangential force	55,6
kN - Maximum tangential force	111,2
Weight	170


Module	10
N. of teeth	78
Addendum modification	5
kN - Normal tangential force	82,6
FkN - Maximum tangential force	165,2
Weight	207

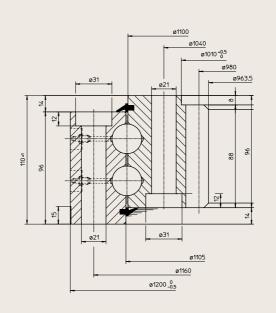
VANCHENGSLEWING BEARING CO LTD. 75


Cod. VI107B01


Module	10
N. of teeth	84
Addendum modification	0
kN - Normal tangential force	75,1
kN - Maximum tangential force	150,2
Weight	235

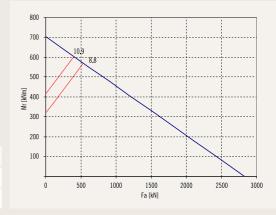

Cod. VI117B01

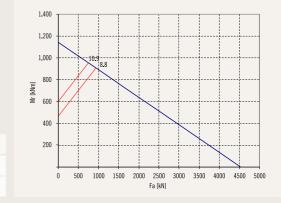
Module	10
N. of teeth.	98
Addendum modification	0
kN - Normal tangential force	52,1
kN - Maximum tangential force	104,2
Weight	202



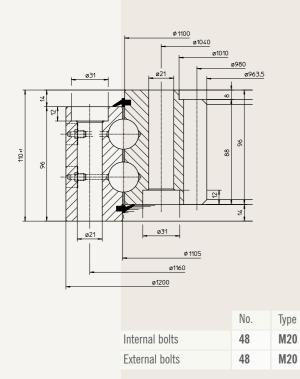
Cod. VI117B06

	N.	Туре
Internal bolts	36	M16
External bolts	36	M16

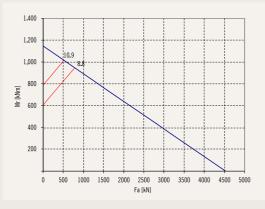

Cod. VI120B00


	N.	Туре
Internal bolts	36	M20
External bolts	36	M20

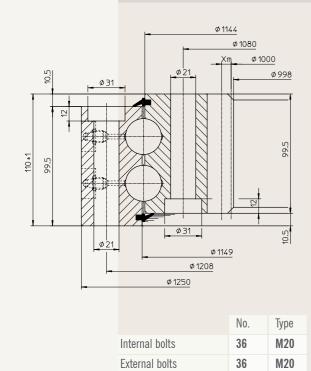
Module	10
N. of teeth	98
Addendum modification	0
kN - Normal tangential force	52,1
kN - Maximum tangential force	104,2
Weight	202

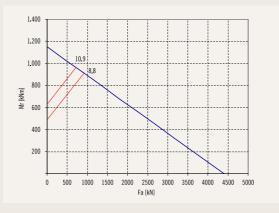


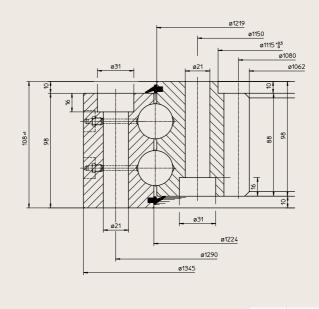
Module	10
N. of teeth	98
Addendum modification	0
kN - Normal tangential force	68,8
FkN - Maximum tangential force	137,6
Weight	247



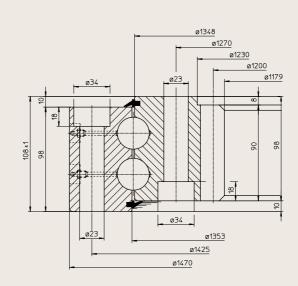
LEORESSA brevini YANG HENG SLEWING BEARING CO LTD. 77


Cod. VI120B01


Module	10
N. of teeth	98
Addendum modification	0
kN - Normal tangential force	68,8
kN - Maximum tangential force	137,6
Weight	247

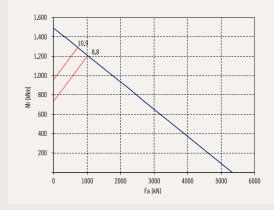

Cod. VI125B01

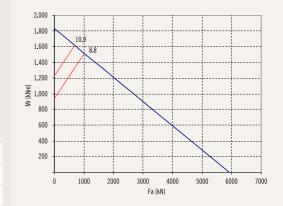
Module	10
N. of teeth.	100
Addendum modification	8
kN - Normal tangential force	86,5
kN - Maximum tangential force	173,0
Weight	282



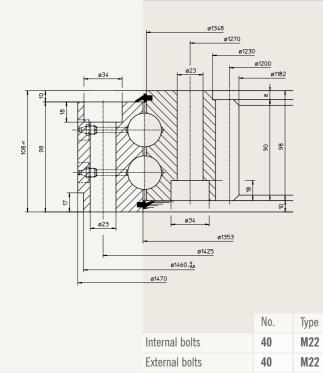
Cod. VI134B00

	N.	Туре
Internal bolts	48	M20
External bolts	48	M20

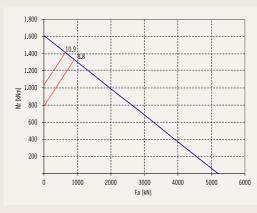

Cod.VI147B01


	N.	Туре
Internal bolts	48	M22
External bolts	48	M22

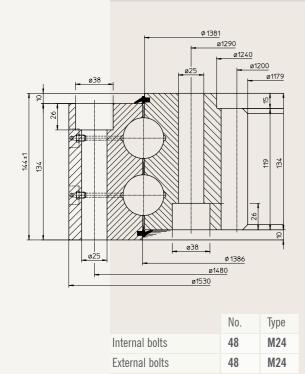
Module	10
N. of teeth	108
Addendum modification	0
kN - Normal tangential force	68,8
kN - Maximum tangential force	137,6
Weight	337

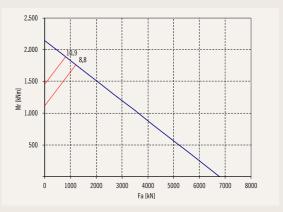


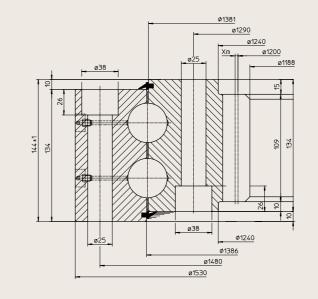
Module	12
N. of teeth	100
Addendum modification	0
kN - Normal tangential force	84,5
FkN - Maximum tangential force	169,0
Weight	394



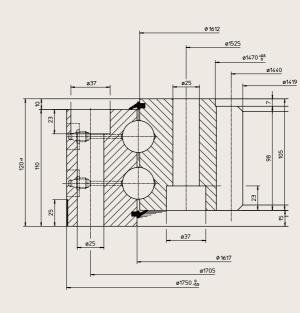
LEORESSA brevini YANGHENGSLEWING BEARING COLLT. 79

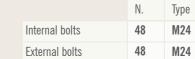

Cod. VI147B02


Module	10
N. of teeth	120
Addendum modification	0
kN - Normal tangential force	70,4
kN - Maximum tangential force	140,8
Weight	394

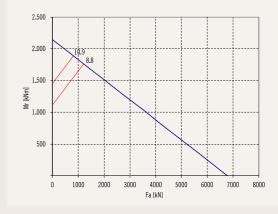

Cod. VI153B03

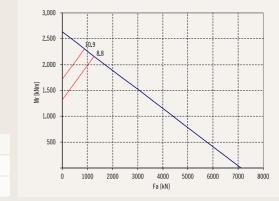
Module	12
N. of teeth.	100
Addendum modification	0
kN - Normal tangential force	111,7
kN - Maximum tangential force	223,4
Weight	620




Cod. VI153B06

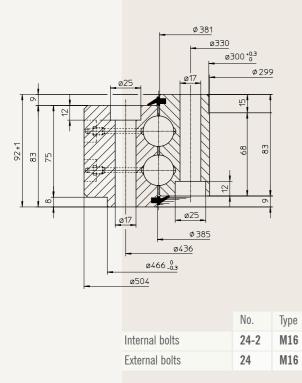
	N.	Туре
Internal bolts	48	M24
External bolts	48	M24

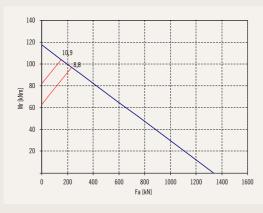

Cod. VI175B03



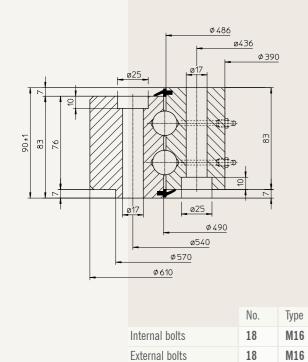
LEONESSA brevini 80 YANCHENG SLEWING BEARING

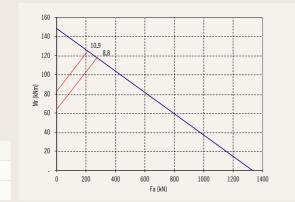
Module	10
N. of teeth	120
Addendum modification	3
kN - Normal tangential force	86,9
kN - Maximum tangential force	173,8
Weight	620

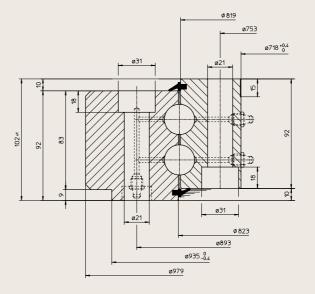

Module	12
N. of teeth	120
Addendum modification	0
kN - Normal tangential force	92,0
FkN - Maximum tangential force	184,0
Weight	600


LEORESSA brevini YANGHENGSLEWING BEARING COLLT. 81

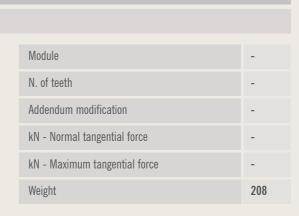
Double row of balls Without gear

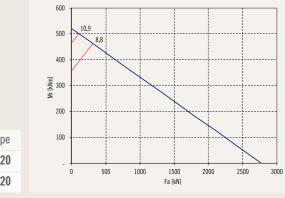

Cod. VS050B00


Module	-
N. of teeth	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	64


Cod. VS061B00

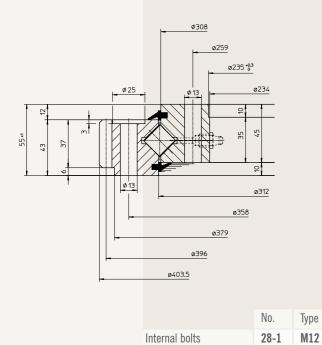
Module	-
N. of teeth.	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	98

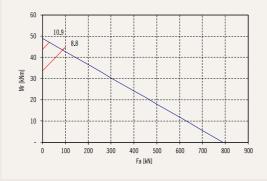


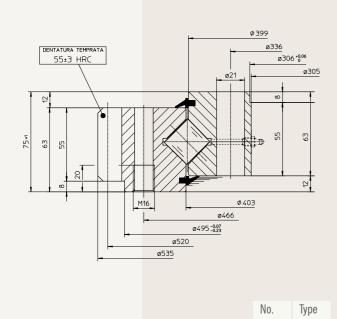

Cod. VS098B00

	N.	Тур
Internal bolts	36	M2
External bolts	36	M2

82






Cod. V18E089

Module	4,5
N. of teeth	88
Addendum modification	0
kN - Normal tangential force	8,4
kN - Maximum tangential force	16,8
Weight	25

Cod. V25E139

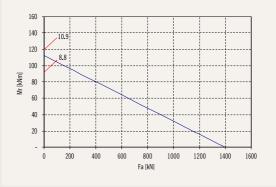
Internal bolts

External bolts

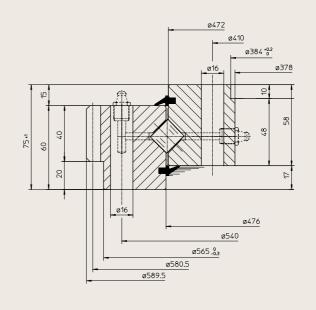
External bolts

24

M12

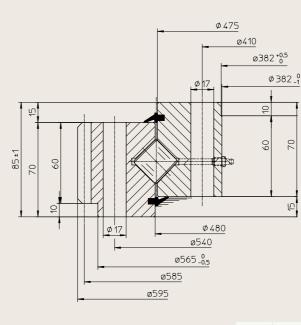

M20

M16


18-1

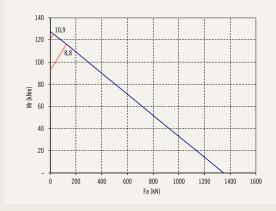
18

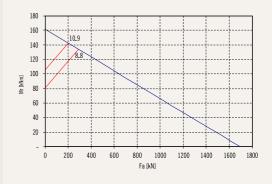
Module	8
N. of teeth.	65
Addendum modification	0
kN - Normal tangential force	22,8
kN - Maximum tangential force	45,6
Weight	62



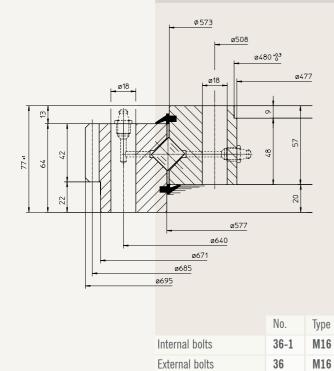
Cod. V18E083

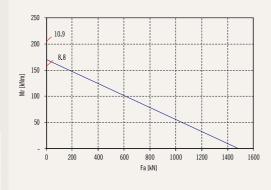
	N.	Туре
Internal bolts	36-1	M14
External bolts	36	M14


Cod. V25E013

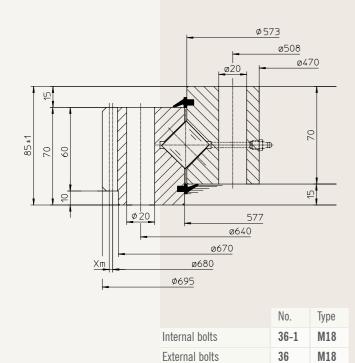

	N.	Туре
Internal bolts	24	M16
External bolts	24	M16

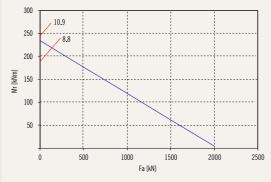
Module	4,5
N. of teeth	129
Addendum modification	0
kN - Normal tangential force	8,4
kN - Maximum tangential force	16,8
Weight	58

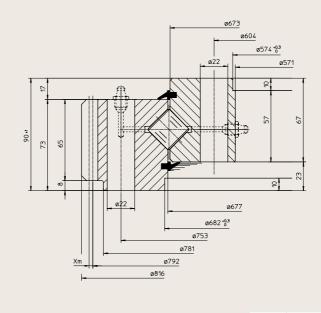

Module	5
N. of teeth	117
Addendum modification	0
kN - Normal tangential force	10,4
kN - Maximum tangential force	20,8
Weight	76


STILE Single row of rollers C

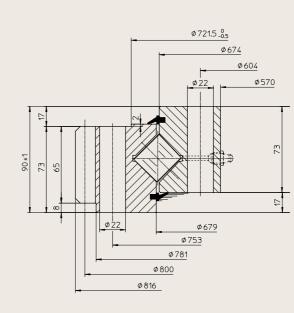
LEORESSA brevini YANGHENGSLEWING BEARING CO LTD. 87


Cod. V18E082


Module	5
N. of teeth	137
Addendum modification	0
kN - Normal tangential force	10,4
kN - Maximum tangential force	20,8
Weight	85

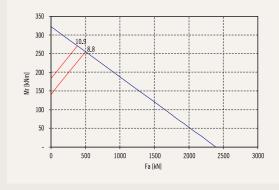

Cod. V25E195

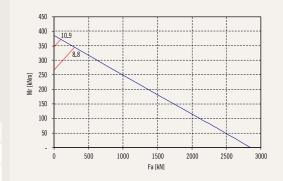
Module	5
N. of teeth.	136
Addendum modification	2,5
kN - Normal tangential force	14,4
kN - Maximum tangential force	28,8
Weight	97



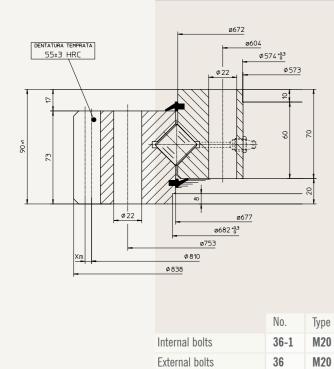
Cod. V25E197

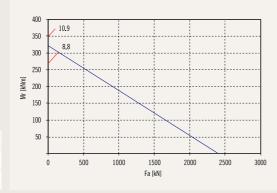
	N.	Туре
Internal bolts	18	M20
External bolts	18	M20


Cod. V30E081

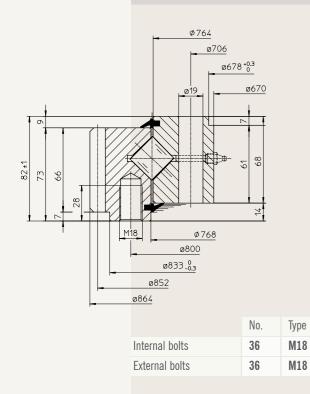

	N.	Туре
Internal bolts	36-1	M20
External bolts	36	M20

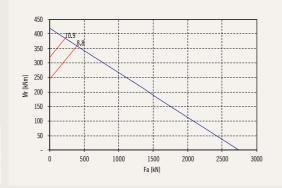
Module	6
N. of teeth	132
Addendum modification	6,552
kN - Normal tangential force	18,0
kN - Maximum tangential force	36,0
Weight	118

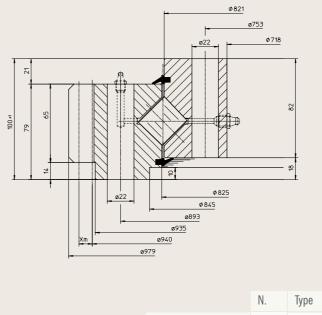

Module8N. of teeth100Addendum modification0		
	Module	8
Addendum modification 0	N. of teeth	100
	Addendum modification	0
kN - Normal tangential force 30,7	kN - Normal tangential force	30,7
kN - Maximum tangential force 61,4	kN - Maximum tangential force	61,4
Weight 118	Weight	118



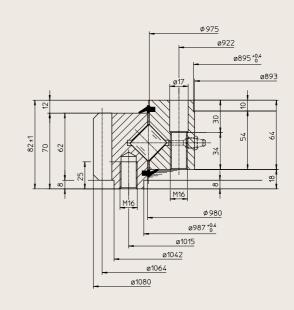
SING Single row of rollers CIS


Cod. V25E248


Module	10
N. of teeth	81
Addendum modification	5
kN - Normal tangential force	63,4
kN - Maximum tangential force	126,8
Weight	132

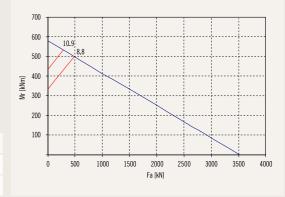

Cod. V25E131

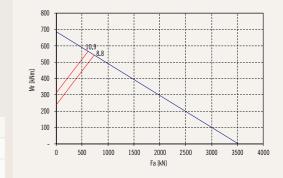
Module	6
N. of teeth.	142
Addendum modification	0
kN - Normal tangential force	20,7
kN - Maximum tangential force	41,4
Weight	109



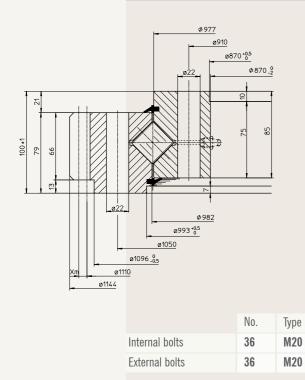
Cod. V30E150

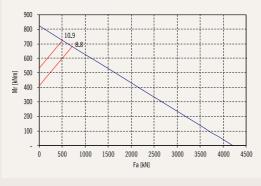
	IN.	Type
Internal bolts	36	M20
External bolts	36	M20


Cod. V25E062

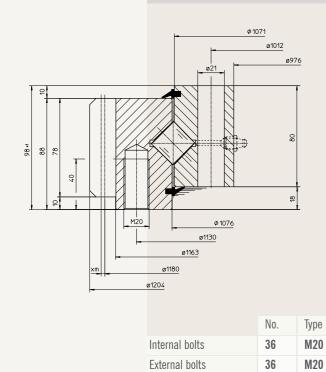

	N.	Туре
Internal bolts	30	M16
External bolts	30	M16

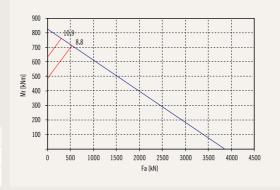
Module	10
N. of teeth	94
Addendum modification	11
kN - Normal tangential force	56,5
kN - Maximum tangential force	113,0
Weight	180

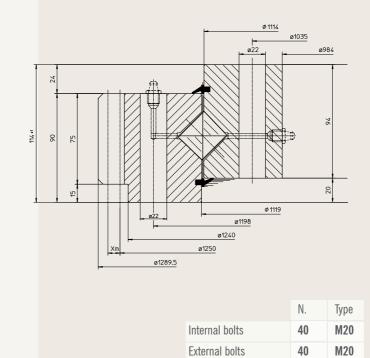

Module	8
N. of teeth	133
Addendum modification	0
kN - Normal tangential force	29,7
kN - Maximum tangential force	59,4
Weight	129

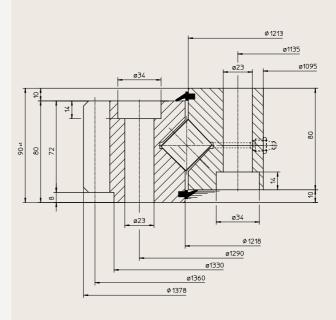

STEEL Single row of rollers GES

LEORESSA brevini YANGHENGSLEWING BEARING COLLTD. 91

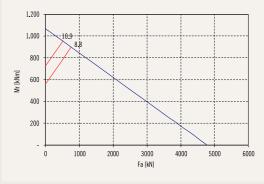

Cod. V30E013

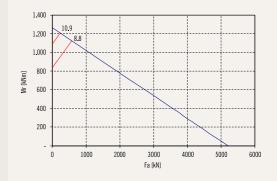

Module	10
N. of teeth	111
Addendum modification	8
kN - Normal tangential force	57,3
kN - Maximum tangential force	114,6
Weight	232


Cod. V25E250


Module	10
N. of teeth.	118
Addendum modification	3
kN - Normal tangential force	56,5
kN - Maximum tangential force	113,0
Weight	218

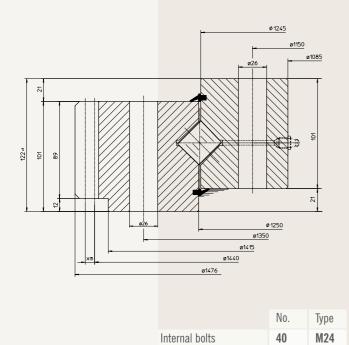
Cod. V30E088


Cod. V30E123


	N.	Туре
Internal bolts	48	M22
External bolts	48	M22

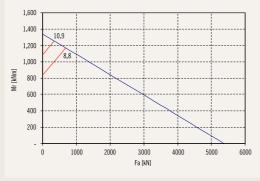
Module	10
N. of teeth	125
Addendum modification	10,5
kN - Normal tangential force	54,3
kN - Maximum tangential force	108,6
Weight	335

Module	10
N. of teeth	136
Addendum modification	0
kN - Normal tangential force	51,8
kN - Maximum tangential force	103,6
Weight	260

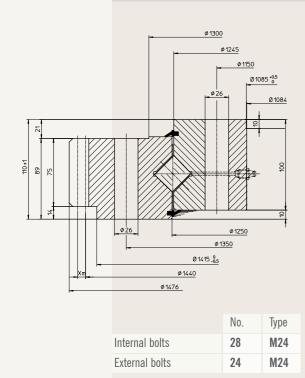


STE Single row of rollers GES

93

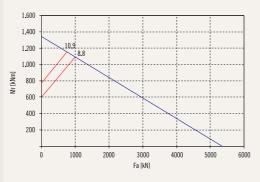

LEORESSA brevini YANG HENG SLEWING BEARING CO LTD.

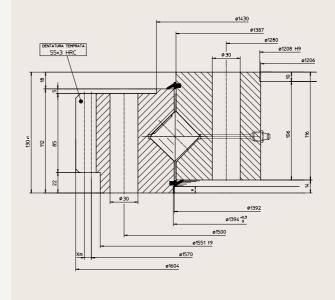
Cod. V30E087



External bolts

Module	10
N. of teeth	144
Addendum modification	8,6
kN - Normal tangential force	69,5
kN - Maximum tangential force	139
Weight	450


Cod. V30E151

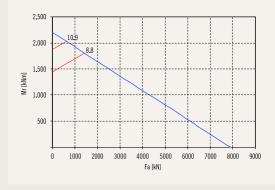

40

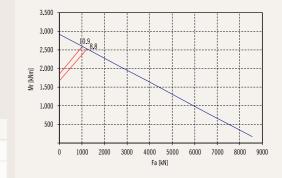
M24

Module	10
N. of teeth.	144
Addendum modification	8,6
kN - Normal tangential force	65,2
kN - Maximum tangential force	130,4
Weight	475

Cod. V40E028

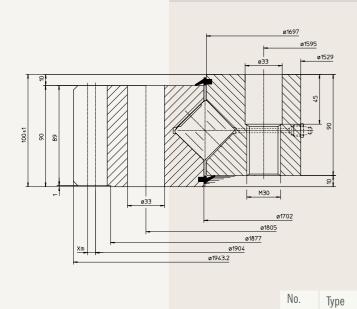
	N.	Туре
Internal bolts	48	M27
External bolts	48	M27


Cod. V40E027


		N.	Туре
l	Internal bolts	36	M27
	External bolts	36	M27

Module	10
N. of teeth	157
Addendum modification	7,5
kN - Normal tangential force	80,0
kN - Maximum tangential force	160,0
Weight	698

Module	12
N. of teeth	150
Addendum modification	3
kN - Normal tangential force	120,0
kN - Maximum tangential force	240,0
Weight	861



SILIC Single row of rollers CI

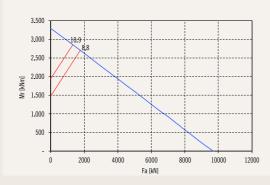
95

LEORESSA brevini YANGHENG SLEWING BEARING CO LTD.

Cod. V40E029

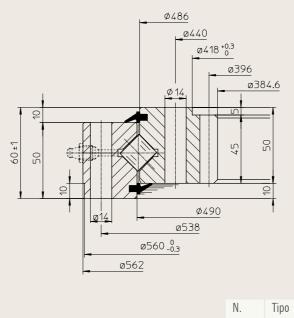
Internal bolts

External bolts

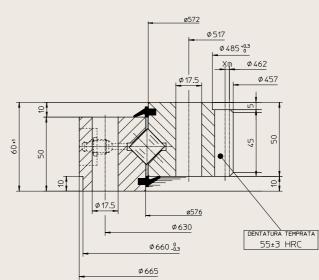

32

32

M30

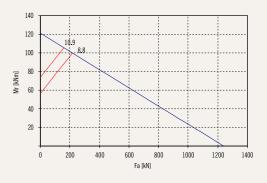

M30

Module	14
N. of teeth	136
Addendum modification	7
kN - Normal tangential force	108,3
kN - Maximum tangential force	216,6
Weight	691

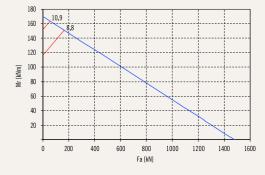

Internal gear

Cod. V181082

30 M12 Internal bolts 30 M12 External bolts

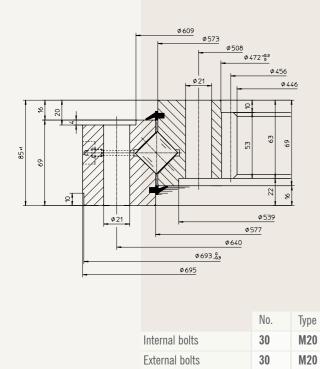

Cod. V181089

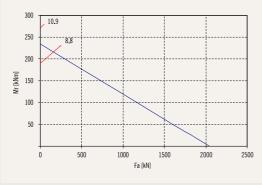
	N.	Tipo
Internal bolts	28	M16
External bolts	28	M16



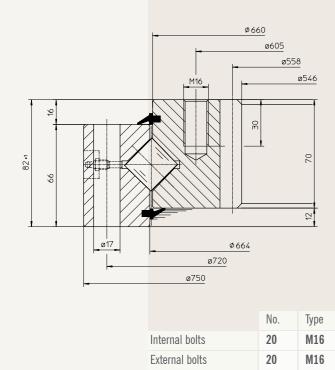
Module	6
N. of teeth	66
Addendum modification	0
kN - Normal tangential force	15,2
kN - Maximum tangential force	30,4
Weight	44

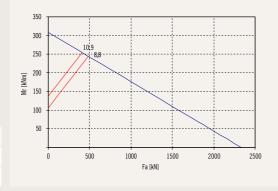
Module	6
N. of teeth	77
Addendum modification	3
kN - Normal tangential force	23,4
kN - Maximum tangential force	46,8
Weight	75

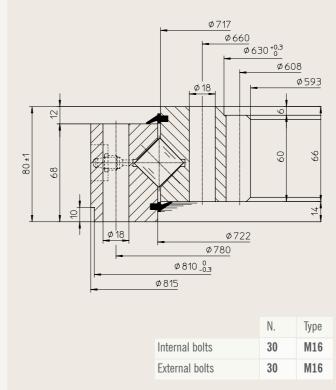


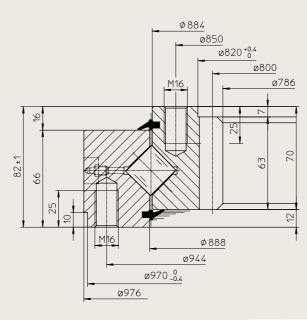

LEORESSA brevini YANG HENG SLEWING BEARING CO LTD.

97

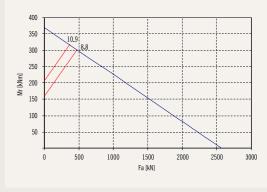

Cod.V25I185


Module	6
N. of teeth	76
Addendum modification	0
kN - Normal tangential force	24,8
kN - Maximum tangential force	49,6
Weight	83

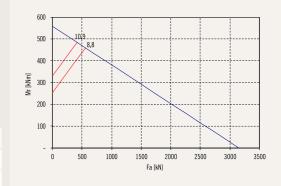

Cod. V251001


Module	6
N. of teeth.	93
Addendum modification	0
kN - Normal tangential force	18,7
kN - Maximum tangential force	37,4
Weight	98

Cod. V25I192



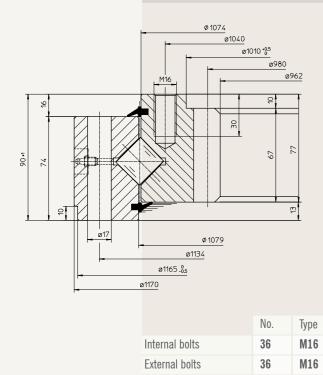
Cod.V25I161



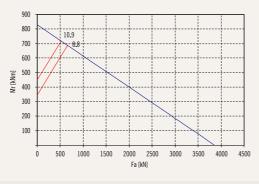
		N.	Туре
Internal	bolts	36	M16
External	bolts	36	M16

Module	8
N. of teeth	76
Addendum modification	0
kN - Normal tangential force	31,3
kN - Maximum tangential force	62,6
Weight	110

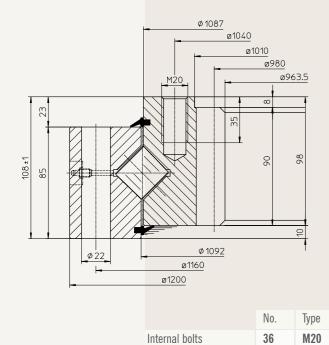
Module	8
N. of teeth	100
Addendum modification	0
kN - Normal tangential force	32,8
kN - Maximum tangential force	65,6
Weight	124



SING Single row of rollers CI

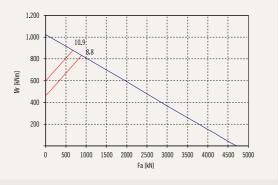

99

LEORESSA brevini YANG HENG SLEWING BEARING CO. LTD.

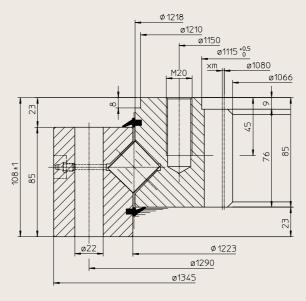

Cod. V251040

Module	10
N. of teeth	98
Addendum modification	0
kN - Normal tangential force	43,6
kN - Maximum tangential force	87,2
Weight	177

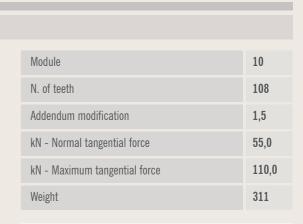
Cod. V30I132

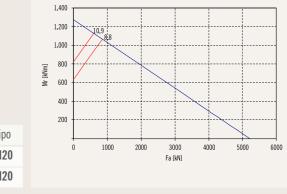


External bolts


M20

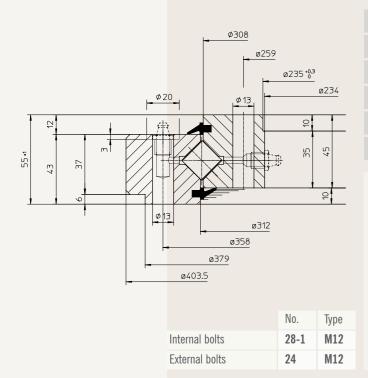
36


Module	10
N. of teeth.	98
Addendum modification	0
kN - Normal tangential force	58,6
kN - Maximum tangential force	117,2
Weight	248

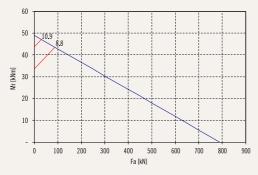


Cod. V301013

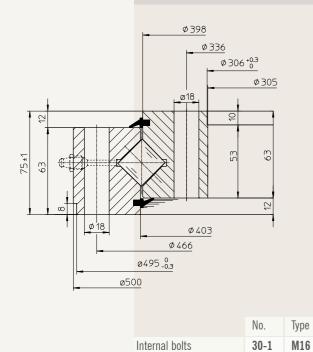
	N.	Tip
Internal bolts	36	M2
External bolts	36	M2



VANCHENGSLEWING BEARING COLLT. 101

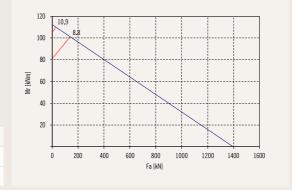

SITE Single row of rollers CTS

Single row of rollers Without gear

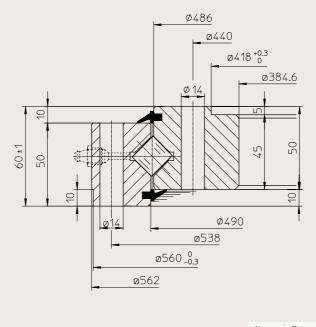

Cod. V18S077

Module	-
N. of teeth	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	24

Cod. V25S084

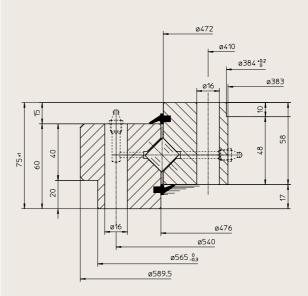


External bolts

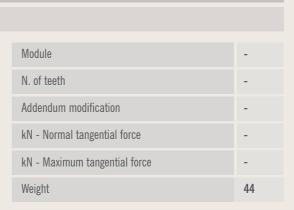

30

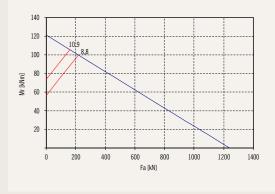
M16

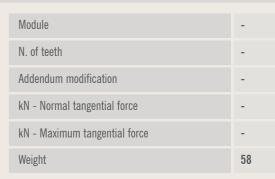
Module	-
N. of teeth.	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	52

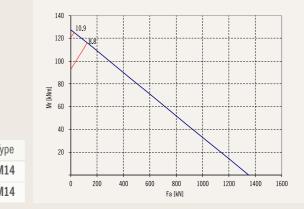


Cod.V18S080

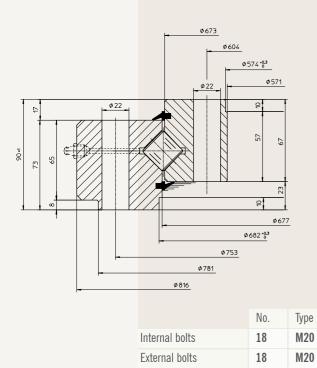


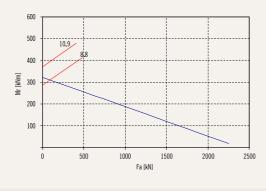

	N.	Туре
Internal bolts	30	M12
External bolts	30	M12


Cod. V18S074

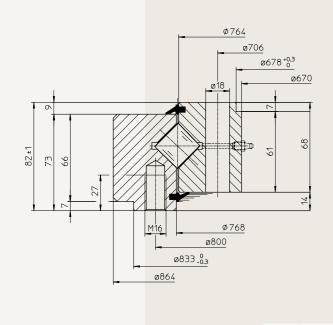


	N.	Тур
Internal bolts	36-1	M1
External bolts	36	M1




VANGHENGSLEWING BEARING COLLT. 103

Single row of rollers Without gear


Cod. V25S085

Module	-
N. of teeth.	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	120

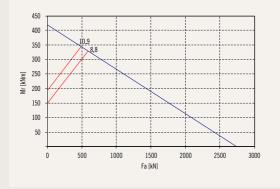
Cod. V25S091

Internal bolts

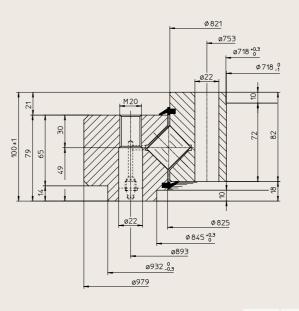
External bolts

N.

24

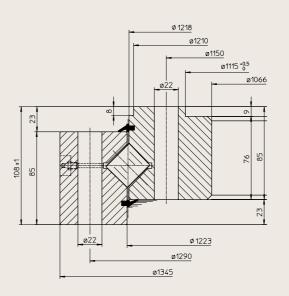

24

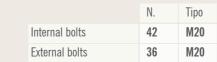
Туре

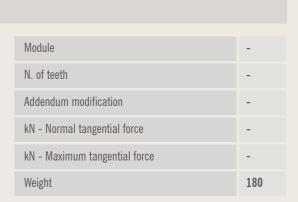

M16

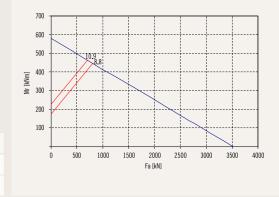
M16

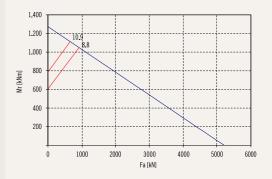
Module	-
N. of teeth	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	109



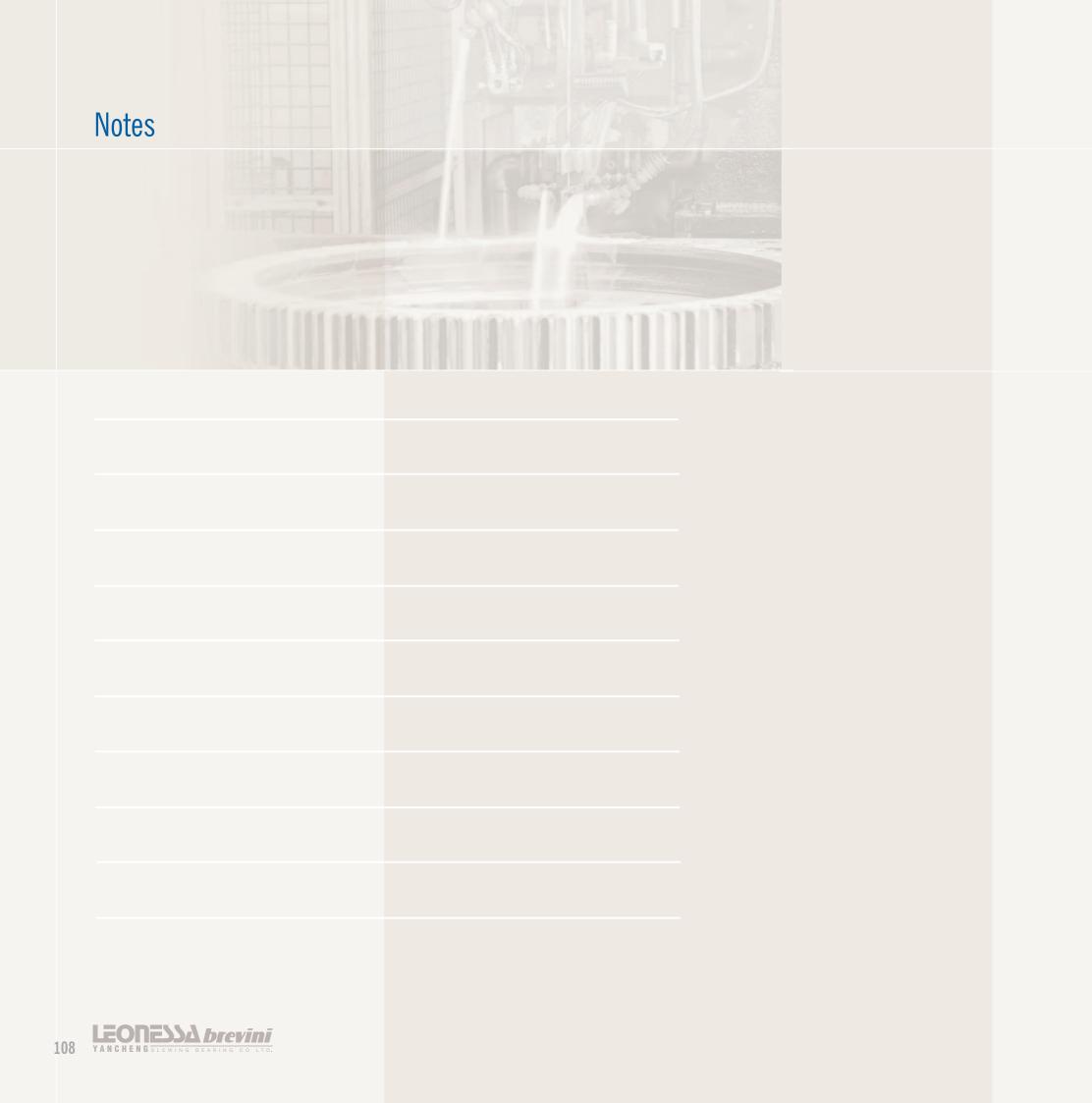

Cod. V30S018


	N.	Tipo
Internal bolts	18	M20
External bolts	18	M20


Cod. V30S023



104 LEORESSA brevini YANCHENGSLEWING BEARING CO LTD.


Module	-
N. of teeth.	-
Addendum modification	-
kN - Normal tangential force	-
kN - Maximum tangential force	-
Weight	311

STIP Single row of rollers CLS

The technical information contained in this catalogue has been checked with the greatest care to ensure accuracy. However no liability can be assumed for any incorrect or incomplete data.

The policy of Leonessa Brevini is one of continuous improvement of its products. The technical data and characteristics of the Slewing Rings of this catalogue can change without notice.

IT'S_COMMUNICATION - www.itsol.it		Ed. No.1 october 2012
		GENERAL SLEWING RINGS CATALOGUE

牛力士布雷维尼(盐城) 回转支承有限公司 江苏盐城经济开发区盐渎东路65号 电话:+8651589026300 传真:+8651589026366

LEONESSA BREVINI (YANCHENG) SLEWING BEARINGS CO.,LTD

No. 65 East Yandu Road, Economic Development Zone, Yancheng, Jiangsu, P.R.C., 224007 Office + 86 515 89026300 Fax + 86 515 89026366 www.leonessabrevini.com

LA LEONESSA S.P.A.

Viale Santa Maria, 90 25013 CARPENEDOLO (Brescia) Italy Tel. + 39 030 9965435 Fax. + 39 030 9965629 sales@laleonessa.it www.laleonessa.it